diff options
Diffstat (limited to 'media/jslib/CaveView/lib/proj4-src.js')
-rw-r--r-- | media/jslib/CaveView/lib/proj4-src.js | 5917 |
1 files changed, 5917 insertions, 0 deletions
diff --git a/media/jslib/CaveView/lib/proj4-src.js b/media/jslib/CaveView/lib/proj4-src.js new file mode 100644 index 0000000..4314fba --- /dev/null +++ b/media/jslib/CaveView/lib/proj4-src.js @@ -0,0 +1,5917 @@ +(function (global, factory) {
+ typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
+ typeof define === 'function' && define.amd ? define(factory) :
+ (global.proj4 = factory());
+}(this, (function () { 'use strict';
+
+ var globals = function(defs) {
+ defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees");
+ defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees");
+ defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs");
+
+ defs.WGS84 = defs['EPSG:4326'];
+ defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857
+ defs.GOOGLE = defs['EPSG:3857'];
+ defs['EPSG:900913'] = defs['EPSG:3857'];
+ defs['EPSG:102113'] = defs['EPSG:3857'];
+ };
+
+ var PJD_3PARAM = 1;
+ var PJD_7PARAM = 2;
+ var PJD_WGS84 = 4; // WGS84 or equivalent
+ var PJD_NODATUM = 5; // WGS84 or equivalent
+ var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
+ var HALF_PI = Math.PI/2;
+ // ellipoid pj_set_ell.c
+ var SIXTH = 0.1666666666666666667;
+ /* 1/6 */
+ var RA4 = 0.04722222222222222222;
+ /* 17/360 */
+ var RA6 = 0.02215608465608465608;
+ var EPSLN = (typeof Number.EPSILON === 'undefined') ? 1.0e-10 : Number.EPSILON;
+ var D2R = 0.01745329251994329577;
+ var R2D = 57.29577951308232088;
+ var FORTPI = Math.PI/4;
+ var TWO_PI = Math.PI * 2;
+ // SPI is slightly greater than Math.PI, so values that exceed the -180..180
+ // degree range by a tiny amount don't get wrapped. This prevents points that
+ // have drifted from their original location along the 180th meridian (due to
+ // floating point error) from changing their sign.
+ var SPI = 3.14159265359;
+
+ var exports$1 = {};
+ exports$1.greenwich = 0.0; //"0dE",
+ exports$1.lisbon = -9.131906111111; //"9d07'54.862\"W",
+ exports$1.paris = 2.337229166667; //"2d20'14.025\"E",
+ exports$1.bogota = -74.080916666667; //"74d04'51.3\"W",
+ exports$1.madrid = -3.687938888889; //"3d41'16.58\"W",
+ exports$1.rome = 12.452333333333; //"12d27'8.4\"E",
+ exports$1.bern = 7.439583333333; //"7d26'22.5\"E",
+ exports$1.jakarta = 106.807719444444; //"106d48'27.79\"E",
+ exports$1.ferro = -17.666666666667; //"17d40'W",
+ exports$1.brussels = 4.367975; //"4d22'4.71\"E",
+ exports$1.stockholm = 18.058277777778; //"18d3'29.8\"E",
+ exports$1.athens = 23.7163375; //"23d42'58.815\"E",
+ exports$1.oslo = 10.722916666667; //"10d43'22.5\"E"
+
+ var units = {
+ ft: {to_meter: 0.3048},
+ 'us-ft': {to_meter: 1200 / 3937}
+ };
+
+ var ignoredChar = /[\s_\-\/\(\)]/g;
+ function match(obj, key) {
+ if (obj[key]) {
+ return obj[key];
+ }
+ var keys = Object.keys(obj);
+ var lkey = key.toLowerCase().replace(ignoredChar, '');
+ var i = -1;
+ var testkey, processedKey;
+ while (++i < keys.length) {
+ testkey = keys[i];
+ processedKey = testkey.toLowerCase().replace(ignoredChar, '');
+ if (processedKey === lkey) {
+ return obj[testkey];
+ }
+ }
+ }
+
+ var parseProj = function(defData) {
+ var self = {};
+ var paramObj = defData.split('+').map(function(v) {
+ return v.trim();
+ }).filter(function(a) {
+ return a;
+ }).reduce(function(p, a) {
+ var split = a.split('=');
+ split.push(true);
+ p[split[0].toLowerCase()] = split[1];
+ return p;
+ }, {});
+ var paramName, paramVal, paramOutname;
+ var params = {
+ proj: 'projName',
+ datum: 'datumCode',
+ rf: function(v) {
+ self.rf = parseFloat(v);
+ },
+ lat_0: function(v) {
+ self.lat0 = v * D2R;
+ },
+ lat_1: function(v) {
+ self.lat1 = v * D2R;
+ },
+ lat_2: function(v) {
+ self.lat2 = v * D2R;
+ },
+ lat_ts: function(v) {
+ self.lat_ts = v * D2R;
+ },
+ lon_0: function(v) {
+ self.long0 = v * D2R;
+ },
+ lon_1: function(v) {
+ self.long1 = v * D2R;
+ },
+ lon_2: function(v) {
+ self.long2 = v * D2R;
+ },
+ alpha: function(v) {
+ self.alpha = parseFloat(v) * D2R;
+ },
+ lonc: function(v) {
+ self.longc = v * D2R;
+ },
+ x_0: function(v) {
+ self.x0 = parseFloat(v);
+ },
+ y_0: function(v) {
+ self.y0 = parseFloat(v);
+ },
+ k_0: function(v) {
+ self.k0 = parseFloat(v);
+ },
+ k: function(v) {
+ self.k0 = parseFloat(v);
+ },
+ a: function(v) {
+ self.a = parseFloat(v);
+ },
+ b: function(v) {
+ self.b = parseFloat(v);
+ },
+ r_a: function() {
+ self.R_A = true;
+ },
+ zone: function(v) {
+ self.zone = parseInt(v, 10);
+ },
+ south: function() {
+ self.utmSouth = true;
+ },
+ towgs84: function(v) {
+ self.datum_params = v.split(",").map(function(a) {
+ return parseFloat(a);
+ });
+ },
+ to_meter: function(v) {
+ self.to_meter = parseFloat(v);
+ },
+ units: function(v) {
+ self.units = v;
+ var unit = match(units, v);
+ if (unit) {
+ self.to_meter = unit.to_meter;
+ }
+ },
+ from_greenwich: function(v) {
+ self.from_greenwich = v * D2R;
+ },
+ pm: function(v) {
+ var pm = match(exports$1, v);
+ self.from_greenwich = (pm ? pm : parseFloat(v)) * D2R;
+ },
+ nadgrids: function(v) {
+ if (v === '@null') {
+ self.datumCode = 'none';
+ }
+ else {
+ self.nadgrids = v;
+ }
+ },
+ axis: function(v) {
+ var legalAxis = "ewnsud";
+ if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) {
+ self.axis = v;
+ }
+ }
+ };
+ for (paramName in paramObj) {
+ paramVal = paramObj[paramName];
+ if (paramName in params) {
+ paramOutname = params[paramName];
+ if (typeof paramOutname === 'function') {
+ paramOutname(paramVal);
+ }
+ else {
+ self[paramOutname] = paramVal;
+ }
+ }
+ else {
+ self[paramName] = paramVal;
+ }
+ }
+ if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){
+ self.datumCode = self.datumCode.toLowerCase();
+ }
+ return self;
+ };
+
+ var NEUTRAL = 1;
+ var KEYWORD = 2;
+ var NUMBER = 3;
+ var QUOTED = 4;
+ var AFTERQUOTE = 5;
+ var ENDED = -1;
+ var whitespace = /\s/;
+ var latin = /[A-Za-z]/;
+ var keyword = /[A-Za-z84]/;
+ var endThings = /[,\]]/;
+ var digets = /[\d\.E\-\+]/;
+ // const ignoredChar = /[\s_\-\/\(\)]/g;
+ function Parser(text) {
+ if (typeof text !== 'string') {
+ throw new Error('not a string');
+ }
+ this.text = text.trim();
+ this.level = 0;
+ this.place = 0;
+ this.root = null;
+ this.stack = [];
+ this.currentObject = null;
+ this.state = NEUTRAL;
+ }
+ Parser.prototype.readCharicter = function() {
+ var char = this.text[this.place++];
+ if (this.state !== QUOTED) {
+ while (whitespace.test(char)) {
+ if (this.place >= this.text.length) {
+ return;
+ }
+ char = this.text[this.place++];
+ }
+ }
+ switch (this.state) {
+ case NEUTRAL:
+ return this.neutral(char);
+ case KEYWORD:
+ return this.keyword(char)
+ case QUOTED:
+ return this.quoted(char);
+ case AFTERQUOTE:
+ return this.afterquote(char);
+ case NUMBER:
+ return this.number(char);
+ case ENDED:
+ return;
+ }
+ };
+ Parser.prototype.afterquote = function(char) {
+ if (char === '"') {
+ this.word += '"';
+ this.state = QUOTED;
+ return;
+ }
+ if (endThings.test(char)) {
+ this.word = this.word.trim();
+ this.afterItem(char);
+ return;
+ }
+ throw new Error('havn\'t handled "' +char + '" in afterquote yet, index ' + this.place);
+ };
+ Parser.prototype.afterItem = function(char) {
+ if (char === ',') {
+ if (this.word !== null) {
+ this.currentObject.push(this.word);
+ }
+ this.word = null;
+ this.state = NEUTRAL;
+ return;
+ }
+ if (char === ']') {
+ this.level--;
+ if (this.word !== null) {
+ this.currentObject.push(this.word);
+ this.word = null;
+ }
+ this.state = NEUTRAL;
+ this.currentObject = this.stack.pop();
+ if (!this.currentObject) {
+ this.state = ENDED;
+ }
+
+ return;
+ }
+ };
+ Parser.prototype.number = function(char) {
+ if (digets.test(char)) {
+ this.word += char;
+ return;
+ }
+ if (endThings.test(char)) {
+ this.word = parseFloat(this.word);
+ this.afterItem(char);
+ return;
+ }
+ throw new Error('havn\'t handled "' +char + '" in number yet, index ' + this.place);
+ };
+ Parser.prototype.quoted = function(char) {
+ if (char === '"') {
+ this.state = AFTERQUOTE;
+ return;
+ }
+ this.word += char;
+ return;
+ };
+ Parser.prototype.keyword = function(char) {
+ if (keyword.test(char)) {
+ this.word += char;
+ return;
+ }
+ if (char === '[') {
+ var newObjects = [];
+ newObjects.push(this.word);
+ this.level++;
+ if (this.root === null) {
+ this.root = newObjects;
+ } else {
+ this.currentObject.push(newObjects);
+ }
+ this.stack.push(this.currentObject);
+ this.currentObject = newObjects;
+ this.state = NEUTRAL;
+ return;
+ }
+ if (endThings.test(char)) {
+ this.afterItem(char);
+ return;
+ }
+ throw new Error('havn\'t handled "' +char + '" in keyword yet, index ' + this.place);
+ };
+ Parser.prototype.neutral = function(char) {
+ if (latin.test(char)) {
+ this.word = char;
+ this.state = KEYWORD;
+ return;
+ }
+ if (char === '"') {
+ this.word = '';
+ this.state = QUOTED;
+ return;
+ }
+ if (digets.test(char)) {
+ this.word = char;
+ this.state = NUMBER;
+ return;
+ }
+ if (endThings.test(char)) {
+ this.afterItem(char);
+ return;
+ }
+ throw new Error('havn\'t handled "' +char + '" in neutral yet, index ' + this.place);
+ };
+ Parser.prototype.output = function() {
+ while (this.place < this.text.length) {
+ this.readCharicter();
+ }
+ if (this.state === ENDED) {
+ return this.root;
+ }
+ throw new Error('unable to parse string "' +this.text + '". State is ' + this.state);
+ };
+
+ function parseString(txt) {
+ var parser = new Parser(txt);
+ return parser.output();
+ }
+
+ function mapit(obj, key, value) {
+ if (Array.isArray(key)) {
+ value.unshift(key);
+ key = null;
+ }
+ var thing = key ? {} : obj;
+
+ var out = value.reduce(function(newObj, item) {
+ sExpr(item, newObj);
+ return newObj
+ }, thing);
+ if (key) {
+ obj[key] = out;
+ }
+ }
+
+ function sExpr(v, obj) {
+ if (!Array.isArray(v)) {
+ obj[v] = true;
+ return;
+ }
+ var key = v.shift();
+ if (key === 'PARAMETER') {
+ key = v.shift();
+ }
+ if (v.length === 1) {
+ if (Array.isArray(v[0])) {
+ obj[key] = {};
+ sExpr(v[0], obj[key]);
+ return;
+ }
+ obj[key] = v[0];
+ return;
+ }
+ if (!v.length) {
+ obj[key] = true;
+ return;
+ }
+ if (key === 'TOWGS84') {
+ obj[key] = v;
+ return;
+ }
+ if (!Array.isArray(key)) {
+ obj[key] = {};
+ }
+
+ var i;
+ switch (key) {
+ case 'UNIT':
+ case 'PRIMEM':
+ case 'VERT_DATUM':
+ obj[key] = {
+ name: v[0].toLowerCase(),
+ convert: v[1]
+ };
+ if (v.length === 3) {
+ sExpr(v[2], obj[key]);
+ }
+ return;
+ case 'SPHEROID':
+ case 'ELLIPSOID':
+ obj[key] = {
+ name: v[0],
+ a: v[1],
+ rf: v[2]
+ };
+ if (v.length === 4) {
+ sExpr(v[3], obj[key]);
+ }
+ return;
+ case 'PROJECTEDCRS':
+ case 'PROJCRS':
+ case 'GEOGCS':
+ case 'GEOCCS':
+ case 'PROJCS':
+ case 'LOCAL_CS':
+ case 'GEODCRS':
+ case 'GEODETICCRS':
+ case 'GEODETICDATUM':
+ case 'EDATUM':
+ case 'ENGINEERINGDATUM':
+ case 'VERT_CS':
+ case 'VERTCRS':
+ case 'VERTICALCRS':
+ case 'COMPD_CS':
+ case 'COMPOUNDCRS':
+ case 'ENGINEERINGCRS':
+ case 'ENGCRS':
+ case 'FITTED_CS':
+ case 'LOCAL_DATUM':
+ case 'DATUM':
+ v[0] = ['name', v[0]];
+ mapit(obj, key, v);
+ return;
+ default:
+ i = -1;
+ while (++i < v.length) {
+ if (!Array.isArray(v[i])) {
+ return sExpr(v, obj[key]);
+ }
+ }
+ return mapit(obj, key, v);
+ }
+ }
+
+ var D2R$1 = 0.01745329251994329577;
+ function rename(obj, params) {
+ var outName = params[0];
+ var inName = params[1];
+ if (!(outName in obj) && (inName in obj)) {
+ obj[outName] = obj[inName];
+ if (params.length === 3) {
+ obj[outName] = params[2](obj[outName]);
+ }
+ }
+ }
+
+ function d2r(input) {
+ return input * D2R$1;
+ }
+
+ function cleanWKT(wkt) {
+ if (wkt.type === 'GEOGCS') {
+ wkt.projName = 'longlat';
+ } else if (wkt.type === 'LOCAL_CS') {
+ wkt.projName = 'identity';
+ wkt.local = true;
+ } else {
+ if (typeof wkt.PROJECTION === 'object') {
+ wkt.projName = Object.keys(wkt.PROJECTION)[0];
+ } else {
+ wkt.projName = wkt.PROJECTION;
+ }
+ }
+ if (wkt.UNIT) {
+ wkt.units = wkt.UNIT.name.toLowerCase();
+ if (wkt.units === 'metre') {
+ wkt.units = 'meter';
+ }
+ if (wkt.UNIT.convert) {
+ if (wkt.type === 'GEOGCS') {
+ if (wkt.DATUM && wkt.DATUM.SPHEROID) {
+ wkt.to_meter = wkt.UNIT.convert*wkt.DATUM.SPHEROID.a;
+ }
+ } else {
+ wkt.to_meter = wkt.UNIT.convert, 10;
+ }
+ }
+ }
+ var geogcs = wkt.GEOGCS;
+ if (wkt.type === 'GEOGCS') {
+ geogcs = wkt;
+ }
+ if (geogcs) {
+ //if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){
+ // wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R;
+ //}
+ if (geogcs.DATUM) {
+ wkt.datumCode = geogcs.DATUM.name.toLowerCase();
+ } else {
+ wkt.datumCode = geogcs.name.toLowerCase();
+ }
+ if (wkt.datumCode.slice(0, 2) === 'd_') {
+ wkt.datumCode = wkt.datumCode.slice(2);
+ }
+ if (wkt.datumCode === 'new_zealand_geodetic_datum_1949' || wkt.datumCode === 'new_zealand_1949') {
+ wkt.datumCode = 'nzgd49';
+ }
+ if (wkt.datumCode === 'wgs_1984') {
+ if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') {
+ wkt.sphere = true;
+ }
+ wkt.datumCode = 'wgs84';
+ }
+ if (wkt.datumCode.slice(-6) === '_ferro') {
+ wkt.datumCode = wkt.datumCode.slice(0, - 6);
+ }
+ if (wkt.datumCode.slice(-8) === '_jakarta') {
+ wkt.datumCode = wkt.datumCode.slice(0, - 8);
+ }
+ if (~wkt.datumCode.indexOf('belge')) {
+ wkt.datumCode = 'rnb72';
+ }
+ if (geogcs.DATUM && geogcs.DATUM.SPHEROID) {
+ wkt.ellps = geogcs.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk');
+ if (wkt.ellps.toLowerCase().slice(0, 13) === 'international') {
+ wkt.ellps = 'intl';
+ }
+
+ wkt.a = geogcs.DATUM.SPHEROID.a;
+ wkt.rf = parseFloat(geogcs.DATUM.SPHEROID.rf, 10);
+ }
+ if (~wkt.datumCode.indexOf('osgb_1936')) {
+ wkt.datumCode = 'osgb36';
+ }
+ }
+ if (wkt.b && !isFinite(wkt.b)) {
+ wkt.b = wkt.a;
+ }
+
+ function toMeter(input) {
+ var ratio = wkt.to_meter || 1;
+ return input * ratio;
+ }
+ var renamer = function(a) {
+ return rename(wkt, a);
+ };
+ var list = [
+ ['standard_parallel_1', 'Standard_Parallel_1'],
+ ['standard_parallel_2', 'Standard_Parallel_2'],
+ ['false_easting', 'False_Easting'],
+ ['false_northing', 'False_Northing'],
+ ['central_meridian', 'Central_Meridian'],
+ ['latitude_of_origin', 'Latitude_Of_Origin'],
+ ['latitude_of_origin', 'Central_Parallel'],
+ ['scale_factor', 'Scale_Factor'],
+ ['k0', 'scale_factor'],
+ ['latitude_of_center', 'Latitude_of_center'],
+ ['lat0', 'latitude_of_center', d2r],
+ ['longitude_of_center', 'Longitude_Of_Center'],
+ ['longc', 'longitude_of_center', d2r],
+ ['x0', 'false_easting', toMeter],
+ ['y0', 'false_northing', toMeter],
+ ['long0', 'central_meridian', d2r],
+ ['lat0', 'latitude_of_origin', d2r],
+ ['lat0', 'standard_parallel_1', d2r],
+ ['lat1', 'standard_parallel_1', d2r],
+ ['lat2', 'standard_parallel_2', d2r],
+ ['alpha', 'azimuth', d2r],
+ ['srsCode', 'name']
+ ];
+ list.forEach(renamer);
+ if (!wkt.long0 && wkt.longc && (wkt.projName === 'Albers_Conic_Equal_Area' || wkt.projName === 'Lambert_Azimuthal_Equal_Area')) {
+ wkt.long0 = wkt.longc;
+ }
+ if (!wkt.lat_ts && wkt.lat1 && (wkt.projName === 'Stereographic_South_Pole' || wkt.projName === 'Polar Stereographic (variant B)')) {
+ wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90);
+ wkt.lat_ts = wkt.lat1;
+ }
+ }
+ var wkt = function(wkt) {
+ var lisp = parseString(wkt);
+ var type = lisp.shift();
+ var name = lisp.shift();
+ lisp.unshift(['name', name]);
+ lisp.unshift(['type', type]);
+ var obj = {};
+ sExpr(lisp, obj);
+ cleanWKT(obj);
+ return obj;
+ };
+
+ function defs(name) {
+ /*global console*/
+ var that = this;
+ if (arguments.length === 2) {
+ var def = arguments[1];
+ if (typeof def === 'string') {
+ if (def.charAt(0) === '+') {
+ defs[name] = parseProj(arguments[1]);
+ }
+ else {
+ defs[name] = wkt(arguments[1]);
+ }
+ } else {
+ defs[name] = def;
+ }
+ }
+ else if (arguments.length === 1) {
+ if (Array.isArray(name)) {
+ return name.map(function(v) {
+ if (Array.isArray(v)) {
+ defs.apply(that, v);
+ }
+ else {
+ defs(v);
+ }
+ });
+ }
+ else if (typeof name === 'string') {
+ if (name in defs) {
+ return defs[name];
+ }
+ }
+ else if ('EPSG' in name) {
+ defs['EPSG:' + name.EPSG] = name;
+ }
+ else if ('ESRI' in name) {
+ defs['ESRI:' + name.ESRI] = name;
+ }
+ else if ('IAU2000' in name) {
+ defs['IAU2000:' + name.IAU2000] = name;
+ }
+ else {
+ console.log(name);
+ }
+ return;
+ }
+
+
+ }
+ globals(defs);
+
+ function testObj(code){
+ return typeof code === 'string';
+ }
+ function testDef(code){
+ return code in defs;
+ }
+ var codeWords = ['PROJECTEDCRS', 'PROJCRS', 'GEOGCS','GEOCCS','PROJCS','LOCAL_CS', 'GEODCRS', 'GEODETICCRS', 'GEODETICDATUM', 'ENGCRS', 'ENGINEERINGCRS'];
+ function testWKT(code){
+ return codeWords.some(function (word) {
+ return code.indexOf(word) > -1;
+ });
+ }
+ function testProj(code){
+ return code[0] === '+';
+ }
+ function parse(code){
+ if (testObj(code)) {
+ //check to see if this is a WKT string
+ if (testDef(code)) {
+ return defs[code];
+ }
+ if (testWKT(code)) {
+ return wkt(code);
+ }
+ if (testProj(code)) {
+ return parseProj(code);
+ }
+ }else{
+ return code;
+ }
+ }
+
+ var extend = function(destination, source) {
+ destination = destination || {};
+ var value, property;
+ if (!source) {
+ return destination;
+ }
+ for (property in source) {
+ value = source[property];
+ if (value !== undefined) {
+ destination[property] = value;
+ }
+ }
+ return destination;
+ };
+
+ var msfnz = function(eccent, sinphi, cosphi) {
+ var con = eccent * sinphi;
+ return cosphi / (Math.sqrt(1 - con * con));
+ };
+
+ var sign = function(x) {
+ return x<0 ? -1 : 1;
+ };
+
+ var adjust_lon = function(x) {
+ return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI));
+ };
+
+ var tsfnz = function(eccent, phi, sinphi) {
+ var con = eccent * sinphi;
+ var com = 0.5 * eccent;
+ con = Math.pow(((1 - con) / (1 + con)), com);
+ return (Math.tan(0.5 * (HALF_PI - phi)) / con);
+ };
+
+ var phi2z = function(eccent, ts) {
+ var eccnth = 0.5 * eccent;
+ var con, dphi;
+ var phi = HALF_PI - 2 * Math.atan(ts);
+ for (var i = 0; i <= 15; i++) {
+ con = eccent * Math.sin(phi);
+ dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi;
+ phi += dphi;
+ if (Math.abs(dphi) <= 0.0000000001) {
+ return phi;
+ }
+ }
+ //console.log("phi2z has NoConvergence");
+ return -9999;
+ };
+
+ function init() {
+ var con = this.b / this.a;
+ this.es = 1 - con * con;
+ if(!('x0' in this)){
+ this.x0 = 0;
+ }
+ if(!('y0' in this)){
+ this.y0 = 0;
+ }
+ this.e = Math.sqrt(this.es);
+ if (this.lat_ts) {
+ if (this.sphere) {
+ this.k0 = Math.cos(this.lat_ts);
+ }
+ else {
+ this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
+ }
+ }
+ else {
+ if (!this.k0) {
+ if (this.k) {
+ this.k0 = this.k;
+ }
+ else {
+ this.k0 = 1;
+ }
+ }
+ }
+ }
+
+ /* Mercator forward equations--mapping lat,long to x,y
+ --------------------------------------------------*/
+
+ function forward(p) {
+ var lon = p.x;
+ var lat = p.y;
+ // convert to radians
+ if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) {
+ return null;
+ }
+
+ var x, y;
+ if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
+ return null;
+ }
+ else {
+ if (this.sphere) {
+ x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
+ y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat));
+ }
+ else {
+ var sinphi = Math.sin(lat);
+ var ts = tsfnz(this.e, lat, sinphi);
+ x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
+ y = this.y0 - this.a * this.k0 * Math.log(ts);
+ }
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+ }
+
+ /* Mercator inverse equations--mapping x,y to lat/long
+ --------------------------------------------------*/
+ function inverse(p) {
+
+ var x = p.x - this.x0;
+ var y = p.y - this.y0;
+ var lon, lat;
+
+ if (this.sphere) {
+ lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0)));
+ }
+ else {
+ var ts = Math.exp(-y / (this.a * this.k0));
+ lat = phi2z(this.e, ts);
+ if (lat === -9999) {
+ return null;
+ }
+ }
+ lon = adjust_lon(this.long0 + x / (this.a * this.k0));
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$1 = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"];
+ var merc = {
+ init: init,
+ forward: forward,
+ inverse: inverse,
+ names: names$1
+ };
+
+ function init$1() {
+ //no-op for longlat
+ }
+
+ function identity(pt) {
+ return pt;
+ }
+ var names$2 = ["longlat", "identity"];
+ var longlat = {
+ init: init$1,
+ forward: identity,
+ inverse: identity,
+ names: names$2
+ };
+
+ var projs = [merc, longlat];
+ var names$$1 = {};
+ var projStore = [];
+
+ function add(proj, i) {
+ var len = projStore.length;
+ if (!proj.names) {
+ console.log(i);
+ return true;
+ }
+ projStore[len] = proj;
+ proj.names.forEach(function(n) {
+ names$$1[n.toLowerCase()] = len;
+ });
+ return this;
+ }
+
+ function get(name) {
+ if (!name) {
+ return false;
+ }
+ var n = name.toLowerCase();
+ if (typeof names$$1[n] !== 'undefined' && projStore[names$$1[n]]) {
+ return projStore[names$$1[n]];
+ }
+ }
+
+ function start() {
+ projs.forEach(add);
+ }
+ var projections = {
+ start: start,
+ add: add,
+ get: get
+ };
+
+ var exports$2 = {};
+ exports$2.MERIT = {
+ a: 6378137.0,
+ rf: 298.257,
+ ellipseName: "MERIT 1983"
+ };
+
+ exports$2.SGS85 = {
+ a: 6378136.0,
+ rf: 298.257,
+ ellipseName: "Soviet Geodetic System 85"
+ };
+
+ exports$2.GRS80 = {
+ a: 6378137.0,
+ rf: 298.257222101,
+ ellipseName: "GRS 1980(IUGG, 1980)"
+ };
+
+ exports$2.IAU76 = {
+ a: 6378140.0,
+ rf: 298.257,
+ ellipseName: "IAU 1976"
+ };
+
+ exports$2.airy = {
+ a: 6377563.396,
+ b: 6356256.910,
+ ellipseName: "Airy 1830"
+ };
+
+ exports$2.APL4 = {
+ a: 6378137,
+ rf: 298.25,
+ ellipseName: "Appl. Physics. 1965"
+ };
+
+ exports$2.NWL9D = {
+ a: 6378145.0,
+ rf: 298.25,
+ ellipseName: "Naval Weapons Lab., 1965"
+ };
+
+ exports$2.mod_airy = {
+ a: 6377340.189,
+ b: 6356034.446,
+ ellipseName: "Modified Airy"
+ };
+
+ exports$2.andrae = {
+ a: 6377104.43,
+ rf: 300.0,
+ ellipseName: "Andrae 1876 (Den., Iclnd.)"
+ };
+
+ exports$2.aust_SA = {
+ a: 6378160.0,
+ rf: 298.25,
+ ellipseName: "Australian Natl & S. Amer. 1969"
+ };
+
+ exports$2.GRS67 = {
+ a: 6378160.0,
+ rf: 298.2471674270,
+ ellipseName: "GRS 67(IUGG 1967)"
+ };
+
+ exports$2.bessel = {
+ a: 6377397.155,
+ rf: 299.1528128,
+ ellipseName: "Bessel 1841"
+ };
+
+ exports$2.bess_nam = {
+ a: 6377483.865,
+ rf: 299.1528128,
+ ellipseName: "Bessel 1841 (Namibia)"
+ };
+
+ exports$2.clrk66 = {
+ a: 6378206.4,
+ b: 6356583.8,
+ ellipseName: "Clarke 1866"
+ };
+
+ exports$2.clrk80 = {
+ a: 6378249.145,
+ rf: 293.4663,
+ ellipseName: "Clarke 1880 mod."
+ };
+
+ exports$2.clrk58 = {
+ a: 6378293.645208759,
+ rf: 294.2606763692654,
+ ellipseName: "Clarke 1858"
+ };
+
+ exports$2.CPM = {
+ a: 6375738.7,
+ rf: 334.29,
+ ellipseName: "Comm. des Poids et Mesures 1799"
+ };
+
+ exports$2.delmbr = {
+ a: 6376428.0,
+ rf: 311.5,
+ ellipseName: "Delambre 1810 (Belgium)"
+ };
+
+ exports$2.engelis = {
+ a: 6378136.05,
+ rf: 298.2566,
+ ellipseName: "Engelis 1985"
+ };
+
+ exports$2.evrst30 = {
+ a: 6377276.345,
+ rf: 300.8017,
+ ellipseName: "Everest 1830"
+ };
+
+ exports$2.evrst48 = {
+ a: 6377304.063,
+ rf: 300.8017,
+ ellipseName: "Everest 1948"
+ };
+
+ exports$2.evrst56 = {
+ a: 6377301.243,
+ rf: 300.8017,
+ ellipseName: "Everest 1956"
+ };
+
+ exports$2.evrst69 = {
+ a: 6377295.664,
+ rf: 300.8017,
+ ellipseName: "Everest 1969"
+ };
+
+ exports$2.evrstSS = {
+ a: 6377298.556,
+ rf: 300.8017,
+ ellipseName: "Everest (Sabah & Sarawak)"
+ };
+
+ exports$2.fschr60 = {
+ a: 6378166.0,
+ rf: 298.3,
+ ellipseName: "Fischer (Mercury Datum) 1960"
+ };
+
+ exports$2.fschr60m = {
+ a: 6378155.0,
+ rf: 298.3,
+ ellipseName: "Fischer 1960"
+ };
+
+ exports$2.fschr68 = {
+ a: 6378150.0,
+ rf: 298.3,
+ ellipseName: "Fischer 1968"
+ };
+
+ exports$2.helmert = {
+ a: 6378200.0,
+ rf: 298.3,
+ ellipseName: "Helmert 1906"
+ };
+
+ exports$2.hough = {
+ a: 6378270.0,
+ rf: 297.0,
+ ellipseName: "Hough"
+ };
+
+ exports$2.intl = {
+ a: 6378388.0,
+ rf: 297.0,
+ ellipseName: "International 1909 (Hayford)"
+ };
+
+ exports$2.kaula = {
+ a: 6378163.0,
+ rf: 298.24,
+ ellipseName: "Kaula 1961"
+ };
+
+ exports$2.lerch = {
+ a: 6378139.0,
+ rf: 298.257,
+ ellipseName: "Lerch 1979"
+ };
+
+ exports$2.mprts = {
+ a: 6397300.0,
+ rf: 191.0,
+ ellipseName: "Maupertius 1738"
+ };
+
+ exports$2.new_intl = {
+ a: 6378157.5,
+ b: 6356772.2,
+ ellipseName: "New International 1967"
+ };
+
+ exports$2.plessis = {
+ a: 6376523.0,
+ rf: 6355863.0,
+ ellipseName: "Plessis 1817 (France)"
+ };
+
+ exports$2.krass = {
+ a: 6378245.0,
+ rf: 298.3,
+ ellipseName: "Krassovsky, 1942"
+ };
+
+ exports$2.SEasia = {
+ a: 6378155.0,
+ b: 6356773.3205,
+ ellipseName: "Southeast Asia"
+ };
+
+ exports$2.walbeck = {
+ a: 6376896.0,
+ b: 6355834.8467,
+ ellipseName: "Walbeck"
+ };
+
+ exports$2.WGS60 = {
+ a: 6378165.0,
+ rf: 298.3,
+ ellipseName: "WGS 60"
+ };
+
+ exports$2.WGS66 = {
+ a: 6378145.0,
+ rf: 298.25,
+ ellipseName: "WGS 66"
+ };
+
+ exports$2.WGS7 = {
+ a: 6378135.0,
+ rf: 298.26,
+ ellipseName: "WGS 72"
+ };
+
+ var WGS84 = exports$2.WGS84 = {
+ a: 6378137.0,
+ rf: 298.257223563,
+ ellipseName: "WGS 84"
+ };
+
+ exports$2.sphere = {
+ a: 6370997.0,
+ b: 6370997.0,
+ ellipseName: "Normal Sphere (r=6370997)"
+ };
+
+ function eccentricity(a, b, rf, R_A) {
+ var a2 = a * a; // used in geocentric
+ var b2 = b * b; // used in geocentric
+ var es = (a2 - b2) / a2; // e ^ 2
+ var e = 0;
+ if (R_A) {
+ a *= 1 - es * (SIXTH + es * (RA4 + es * RA6));
+ a2 = a * a;
+ es = 0;
+ } else {
+ e = Math.sqrt(es); // eccentricity
+ }
+ var ep2 = (a2 - b2) / b2; // used in geocentric
+ return {
+ es: es,
+ e: e,
+ ep2: ep2
+ };
+ }
+ function sphere(a, b, rf, ellps, sphere) {
+ if (!a) { // do we have an ellipsoid?
+ var ellipse = match(exports$2, ellps);
+ if (!ellipse) {
+ ellipse = WGS84;
+ }
+ a = ellipse.a;
+ b = ellipse.b;
+ rf = ellipse.rf;
+ }
+
+ if (rf && !b) {
+ b = (1.0 - 1.0 / rf) * a;
+ }
+ if (rf === 0 || Math.abs(a - b) < EPSLN) {
+ sphere = true;
+ b = a;
+ }
+ return {
+ a: a,
+ b: b,
+ rf: rf,
+ sphere: sphere
+ };
+ }
+
+ var exports$3 = {};
+ exports$3.wgs84 = {
+ towgs84: "0,0,0",
+ ellipse: "WGS84",
+ datumName: "WGS84"
+ };
+
+ exports$3.ch1903 = {
+ towgs84: "674.374,15.056,405.346",
+ ellipse: "bessel",
+ datumName: "swiss"
+ };
+
+ exports$3.ggrs87 = {
+ towgs84: "-199.87,74.79,246.62",
+ ellipse: "GRS80",
+ datumName: "Greek_Geodetic_Reference_System_1987"
+ };
+
+ exports$3.nad83 = {
+ towgs84: "0,0,0",
+ ellipse: "GRS80",
+ datumName: "North_American_Datum_1983"
+ };
+
+ exports$3.nad27 = {
+ nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat",
+ ellipse: "clrk66",
+ datumName: "North_American_Datum_1927"
+ };
+
+ exports$3.potsdam = {
+ towgs84: "606.0,23.0,413.0",
+ ellipse: "bessel",
+ datumName: "Potsdam Rauenberg 1950 DHDN"
+ };
+
+ exports$3.carthage = {
+ towgs84: "-263.0,6.0,431.0",
+ ellipse: "clark80",
+ datumName: "Carthage 1934 Tunisia"
+ };
+
+ exports$3.hermannskogel = {
+ towgs84: "653.0,-212.0,449.0",
+ ellipse: "bessel",
+ datumName: "Hermannskogel"
+ };
+
+ exports$3.ire65 = {
+ towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
+ ellipse: "mod_airy",
+ datumName: "Ireland 1965"
+ };
+
+ exports$3.rassadiran = {
+ towgs84: "-133.63,-157.5,-158.62",
+ ellipse: "intl",
+ datumName: "Rassadiran"
+ };
+
+ exports$3.nzgd49 = {
+ towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993",
+ ellipse: "intl",
+ datumName: "New Zealand Geodetic Datum 1949"
+ };
+
+ exports$3.osgb36 = {
+ towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894",
+ ellipse: "airy",
+ datumName: "Airy 1830"
+ };
+
+ exports$3.s_jtsk = {
+ towgs84: "589,76,480",
+ ellipse: 'bessel',
+ datumName: 'S-JTSK (Ferro)'
+ };
+
+ exports$3.beduaram = {
+ towgs84: '-106,-87,188',
+ ellipse: 'clrk80',
+ datumName: 'Beduaram'
+ };
+
+ exports$3.gunung_segara = {
+ towgs84: '-403,684,41',
+ ellipse: 'bessel',
+ datumName: 'Gunung Segara Jakarta'
+ };
+
+ exports$3.rnb72 = {
+ towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1",
+ ellipse: "intl",
+ datumName: "Reseau National Belge 1972"
+ };
+
+ function datum(datumCode, datum_params, a, b, es, ep2) {
+ var out = {};
+
+ if (datumCode === undefined || datumCode === 'none') {
+ out.datum_type = PJD_NODATUM;
+ } else {
+ out.datum_type = PJD_WGS84;
+ }
+
+ if (datum_params) {
+ out.datum_params = datum_params.map(parseFloat);
+ if (out.datum_params[0] !== 0 || out.datum_params[1] !== 0 || out.datum_params[2] !== 0) {
+ out.datum_type = PJD_3PARAM;
+ }
+ if (out.datum_params.length > 3) {
+ if (out.datum_params[3] !== 0 || out.datum_params[4] !== 0 || out.datum_params[5] !== 0 || out.datum_params[6] !== 0) {
+ out.datum_type = PJD_7PARAM;
+ out.datum_params[3] *= SEC_TO_RAD;
+ out.datum_params[4] *= SEC_TO_RAD;
+ out.datum_params[5] *= SEC_TO_RAD;
+ out.datum_params[6] = (out.datum_params[6] / 1000000.0) + 1.0;
+ }
+ }
+ }
+
+ out.a = a; //datum object also uses these values
+ out.b = b;
+ out.es = es;
+ out.ep2 = ep2;
+ return out;
+ }
+
+ function Projection$1(srsCode,callback) {
+ if (!(this instanceof Projection$1)) {
+ return new Projection$1(srsCode);
+ }
+ callback = callback || function(error){
+ if(error){
+ throw error;
+ }
+ };
+ var json = parse(srsCode);
+ if(typeof json !== 'object'){
+ callback(srsCode);
+ return;
+ }
+ var ourProj = Projection$1.projections.get(json.projName);
+ if(!ourProj){
+ callback(srsCode);
+ return;
+ }
+ if (json.datumCode && json.datumCode !== 'none') {
+ var datumDef = match(exports$3, json.datumCode);
+ if (datumDef) {
+ json.datum_params = datumDef.towgs84 ? datumDef.towgs84.split(',') : null;
+ json.ellps = datumDef.ellipse;
+ json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode;
+ }
+ }
+ json.k0 = json.k0 || 1.0;
+ json.axis = json.axis || 'enu';
+ json.ellps = json.ellps || 'wgs84';
+ var sphere_ = sphere(json.a, json.b, json.rf, json.ellps, json.sphere);
+ var ecc = eccentricity(sphere_.a, sphere_.b, sphere_.rf, json.R_A);
+ var datumObj = json.datum || datum(json.datumCode, json.datum_params, sphere_.a, sphere_.b, ecc.es, ecc.ep2);
+
+ extend(this, json); // transfer everything over from the projection because we don't know what we'll need
+ extend(this, ourProj); // transfer all the methods from the projection
+
+ // copy the 4 things over we calulated in deriveConstants.sphere
+ this.a = sphere_.a;
+ this.b = sphere_.b;
+ this.rf = sphere_.rf;
+ this.sphere = sphere_.sphere;
+
+ // copy the 3 things we calculated in deriveConstants.eccentricity
+ this.es = ecc.es;
+ this.e = ecc.e;
+ this.ep2 = ecc.ep2;
+
+ // add in the datum object
+ this.datum = datumObj;
+
+ // init the projection
+ this.init();
+
+ // legecy callback from back in the day when it went to spatialreference.org
+ callback(null, this);
+
+ }
+ Projection$1.projections = projections;
+ Projection$1.projections.start();
+
+ function compareDatums(source, dest) {
+ if (source.datum_type !== dest.datum_type) {
+ return false; // false, datums are not equal
+ } else if (source.a !== dest.a || Math.abs(source.es - dest.es) > 0.000000000050) {
+ // the tolerance for es is to ensure that GRS80 and WGS84
+ // are considered identical
+ return false;
+ } else if (source.datum_type === PJD_3PARAM) {
+ return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2]);
+ } else if (source.datum_type === PJD_7PARAM) {
+ return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2] && source.datum_params[3] === dest.datum_params[3] && source.datum_params[4] === dest.datum_params[4] && source.datum_params[5] === dest.datum_params[5] && source.datum_params[6] === dest.datum_params[6]);
+ } else {
+ return true; // datums are equal
+ }
+ } // cs_compare_datums()
+
+ /*
+ * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
+ * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
+ * according to the current ellipsoid parameters.
+ *
+ * Latitude : Geodetic latitude in radians (input)
+ * Longitude : Geodetic longitude in radians (input)
+ * Height : Geodetic height, in meters (input)
+ * X : Calculated Geocentric X coordinate, in meters (output)
+ * Y : Calculated Geocentric Y coordinate, in meters (output)
+ * Z : Calculated Geocentric Z coordinate, in meters (output)
+ *
+ */
+ function geodeticToGeocentric(p, es, a) {
+ var Longitude = p.x;
+ var Latitude = p.y;
+ var Height = p.z ? p.z : 0; //Z value not always supplied
+
+ var Rn; /* Earth radius at location */
+ var Sin_Lat; /* Math.sin(Latitude) */
+ var Sin2_Lat; /* Square of Math.sin(Latitude) */
+ var Cos_Lat; /* Math.cos(Latitude) */
+
+ /*
+ ** Don't blow up if Latitude is just a little out of the value
+ ** range as it may just be a rounding issue. Also removed longitude
+ ** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001.
+ */
+ if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) {
+ Latitude = -HALF_PI;
+ } else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) {
+ Latitude = HALF_PI;
+ } else if ((Latitude < -HALF_PI) || (Latitude > HALF_PI)) {
+ /* Latitude out of range */
+ //..reportError('geocent:lat out of range:' + Latitude);
+ return null;
+ }
+
+ if (Longitude > Math.PI) {
+ Longitude -= (2 * Math.PI);
+ }
+ Sin_Lat = Math.sin(Latitude);
+ Cos_Lat = Math.cos(Latitude);
+ Sin2_Lat = Sin_Lat * Sin_Lat;
+ Rn = a / (Math.sqrt(1.0e0 - es * Sin2_Lat));
+ return {
+ x: (Rn + Height) * Cos_Lat * Math.cos(Longitude),
+ y: (Rn + Height) * Cos_Lat * Math.sin(Longitude),
+ z: ((Rn * (1 - es)) + Height) * Sin_Lat
+ };
+ } // cs_geodetic_to_geocentric()
+
+ function geocentricToGeodetic(p, es, a, b) {
+ /* local defintions and variables */
+ /* end-criterium of loop, accuracy of sin(Latitude) */
+ var genau = 1e-12;
+ var genau2 = (genau * genau);
+ var maxiter = 30;
+
+ var P; /* distance between semi-minor axis and location */
+ var RR; /* distance between center and location */
+ var CT; /* sin of geocentric latitude */
+ var ST; /* cos of geocentric latitude */
+ var RX;
+ var RK;
+ var RN; /* Earth radius at location */
+ var CPHI0; /* cos of start or old geodetic latitude in iterations */
+ var SPHI0; /* sin of start or old geodetic latitude in iterations */
+ var CPHI; /* cos of searched geodetic latitude */
+ var SPHI; /* sin of searched geodetic latitude */
+ var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
+ var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
+
+ var X = p.x;
+ var Y = p.y;
+ var Z = p.z ? p.z : 0.0; //Z value not always supplied
+ var Longitude;
+ var Latitude;
+ var Height;
+
+ P = Math.sqrt(X * X + Y * Y);
+ RR = Math.sqrt(X * X + Y * Y + Z * Z);
+
+ /* special cases for latitude and longitude */
+ if (P / a < genau) {
+
+ /* special case, if P=0. (X=0., Y=0.) */
+ Longitude = 0.0;
+
+ /* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
+ * of ellipsoid (=center of mass), Latitude becomes PI/2 */
+ if (RR / a < genau) {
+ Latitude = HALF_PI;
+ Height = -b;
+ return {
+ x: p.x,
+ y: p.y,
+ z: p.z
+ };
+ }
+ } else {
+ /* ellipsoidal (geodetic) longitude
+ * interval: -PI < Longitude <= +PI */
+ Longitude = Math.atan2(Y, X);
+ }
+
+ /* --------------------------------------------------------------
+ * Following iterative algorithm was developped by
+ * "Institut for Erdmessung", University of Hannover, July 1988.
+ * Internet: www.ife.uni-hannover.de
+ * Iterative computation of CPHI,SPHI and Height.
+ * Iteration of CPHI and SPHI to 10**-12 radian resp.
+ * 2*10**-7 arcsec.
+ * --------------------------------------------------------------
+ */
+ CT = Z / RR;
+ ST = P / RR;
+ RX = 1.0 / Math.sqrt(1.0 - es * (2.0 - es) * ST * ST);
+ CPHI0 = ST * (1.0 - es) * RX;
+ SPHI0 = CT * RX;
+ iter = 0;
+
+ /* loop to find sin(Latitude) resp. Latitude
+ * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
+ do {
+ iter++;
+ RN = a / Math.sqrt(1.0 - es * SPHI0 * SPHI0);
+
+ /* ellipsoidal (geodetic) height */
+ Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - es * SPHI0 * SPHI0);
+
+ RK = es * RN / (RN + Height);
+ RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST);
+ CPHI = ST * (1.0 - RK) * RX;
+ SPHI = CT * RX;
+ SDPHI = SPHI * CPHI0 - CPHI * SPHI0;
+ CPHI0 = CPHI;
+ SPHI0 = SPHI;
+ }
+ while (SDPHI * SDPHI > genau2 && iter < maxiter);
+
+ /* ellipsoidal (geodetic) latitude */
+ Latitude = Math.atan(SPHI / Math.abs(CPHI));
+ return {
+ x: Longitude,
+ y: Latitude,
+ z: Height
+ };
+ } // cs_geocentric_to_geodetic()
+
+ /****************************************************************/
+ // pj_geocentic_to_wgs84( p )
+ // p = point to transform in geocentric coordinates (x,y,z)
+
+
+ /** point object, nothing fancy, just allows values to be
+ passed back and forth by reference rather than by value.
+ Other point classes may be used as long as they have
+ x and y properties, which will get modified in the transform method.
+ */
+ function geocentricToWgs84(p, datum_type, datum_params) {
+
+ if (datum_type === PJD_3PARAM) {
+ // if( x[io] === HUGE_VAL )
+ // continue;
+ return {
+ x: p.x + datum_params[0],
+ y: p.y + datum_params[1],
+ z: p.z + datum_params[2],
+ };
+ } else if (datum_type === PJD_7PARAM) {
+ var Dx_BF = datum_params[0];
+ var Dy_BF = datum_params[1];
+ var Dz_BF = datum_params[2];
+ var Rx_BF = datum_params[3];
+ var Ry_BF = datum_params[4];
+ var Rz_BF = datum_params[5];
+ var M_BF = datum_params[6];
+ // if( x[io] === HUGE_VAL )
+ // continue;
+ return {
+ x: M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF,
+ y: M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF,
+ z: M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF
+ };
+ }
+ } // cs_geocentric_to_wgs84
+
+ /****************************************************************/
+ // pj_geocentic_from_wgs84()
+ // coordinate system definition,
+ // point to transform in geocentric coordinates (x,y,z)
+ function geocentricFromWgs84(p, datum_type, datum_params) {
+
+ if (datum_type === PJD_3PARAM) {
+ //if( x[io] === HUGE_VAL )
+ // continue;
+ return {
+ x: p.x - datum_params[0],
+ y: p.y - datum_params[1],
+ z: p.z - datum_params[2],
+ };
+
+ } else if (datum_type === PJD_7PARAM) {
+ var Dx_BF = datum_params[0];
+ var Dy_BF = datum_params[1];
+ var Dz_BF = datum_params[2];
+ var Rx_BF = datum_params[3];
+ var Ry_BF = datum_params[4];
+ var Rz_BF = datum_params[5];
+ var M_BF = datum_params[6];
+ var x_tmp = (p.x - Dx_BF) / M_BF;
+ var y_tmp = (p.y - Dy_BF) / M_BF;
+ var z_tmp = (p.z - Dz_BF) / M_BF;
+ //if( x[io] === HUGE_VAL )
+ // continue;
+
+ return {
+ x: x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp,
+ y: -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp,
+ z: Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp
+ };
+ } //cs_geocentric_from_wgs84()
+ }
+
+ function checkParams(type) {
+ return (type === PJD_3PARAM || type === PJD_7PARAM);
+ }
+
+ var datum_transform = function(source, dest, point) {
+ // Short cut if the datums are identical.
+ if (compareDatums(source, dest)) {
+ return point; // in this case, zero is sucess,
+ // whereas cs_compare_datums returns 1 to indicate TRUE
+ // confusing, should fix this
+ }
+
+ // Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest
+ if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) {
+ return point;
+ }
+
+ // If this datum requires grid shifts, then apply it to geodetic coordinates.
+
+ // Do we need to go through geocentric coordinates?
+ if (source.es === dest.es && source.a === dest.a && !checkParams(source.datum_type) && !checkParams(dest.datum_type)) {
+ return point;
+ }
+
+ // Convert to geocentric coordinates.
+ point = geodeticToGeocentric(point, source.es, source.a);
+ // Convert between datums
+ if (checkParams(source.datum_type)) {
+ point = geocentricToWgs84(point, source.datum_type, source.datum_params);
+ }
+ if (checkParams(dest.datum_type)) {
+ point = geocentricFromWgs84(point, dest.datum_type, dest.datum_params);
+ }
+ return geocentricToGeodetic(point, dest.es, dest.a, dest.b);
+
+ };
+
+ var adjust_axis = function(crs, denorm, point) {
+ var xin = point.x,
+ yin = point.y,
+ zin = point.z || 0.0;
+ var v, t, i;
+ var out = {};
+ for (i = 0; i < 3; i++) {
+ if (denorm && i === 2 && point.z === undefined) {
+ continue;
+ }
+ if (i === 0) {
+ v = xin;
+ t = 'x';
+ }
+ else if (i === 1) {
+ v = yin;
+ t = 'y';
+ }
+ else {
+ v = zin;
+ t = 'z';
+ }
+ switch (crs.axis[i]) {
+ case 'e':
+ out[t] = v;
+ break;
+ case 'w':
+ out[t] = -v;
+ break;
+ case 'n':
+ out[t] = v;
+ break;
+ case 's':
+ out[t] = -v;
+ break;
+ case 'u':
+ if (point[t] !== undefined) {
+ out.z = v;
+ }
+ break;
+ case 'd':
+ if (point[t] !== undefined) {
+ out.z = -v;
+ }
+ break;
+ default:
+ //console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName);
+ return null;
+ }
+ }
+ return out;
+ };
+
+ var toPoint = function (array){
+ var out = {
+ x: array[0],
+ y: array[1]
+ };
+ if (array.length>2) {
+ out.z = array[2];
+ }
+ if (array.length>3) {
+ out.m = array[3];
+ }
+ return out;
+ };
+
+ function checkNotWGS(source, dest) {
+ return ((source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM) && dest.datumCode !== 'WGS84') || ((dest.datum.datum_type === PJD_3PARAM || dest.datum.datum_type === PJD_7PARAM) && source.datumCode !== 'WGS84');
+ }
+
+ function transform(source, dest, point) {
+ var wgs84;
+ if (Array.isArray(point)) {
+ point = toPoint(point);
+ }
+
+ // Workaround for datum shifts towgs84, if either source or destination projection is not wgs84
+ if (source.datum && dest.datum && checkNotWGS(source, dest)) {
+ wgs84 = new Projection$1('WGS84');
+ point = transform(source, wgs84, point);
+ source = wgs84;
+ }
+ // DGR, 2010/11/12
+ if (source.axis !== 'enu') {
+ point = adjust_axis(source, false, point);
+ }
+ // Transform source points to long/lat, if they aren't already.
+ if (source.projName === 'longlat') {
+ point = {
+ x: point.x * D2R,
+ y: point.y * D2R
+ };
+ }
+ else {
+ if (source.to_meter) {
+ point = {
+ x: point.x * source.to_meter,
+ y: point.y * source.to_meter
+ };
+ }
+ point = source.inverse(point); // Convert Cartesian to longlat
+ }
+ // Adjust for the prime meridian if necessary
+ if (source.from_greenwich) {
+ point.x += source.from_greenwich;
+ }
+
+ // Convert datums if needed, and if possible.
+ point = datum_transform(source.datum, dest.datum, point);
+
+ // Adjust for the prime meridian if necessary
+ if (dest.from_greenwich) {
+ point = {
+ x: point.x - dest.from_greenwich,
+ y: point.y
+ };
+ }
+
+ if (dest.projName === 'longlat') {
+ // convert radians to decimal degrees
+ point = {
+ x: point.x * R2D,
+ y: point.y * R2D
+ };
+ } else { // else project
+ point = dest.forward(point);
+ if (dest.to_meter) {
+ point = {
+ x: point.x / dest.to_meter,
+ y: point.y / dest.to_meter
+ };
+ }
+ }
+
+ // DGR, 2010/11/12
+ if (dest.axis !== 'enu') {
+ return adjust_axis(dest, true, point);
+ }
+
+ return point;
+ }
+
+ var wgs84 = Projection$1('WGS84');
+
+ function transformer(from, to, coords) {
+ var transformedArray;
+ if (Array.isArray(coords)) {
+ transformedArray = transform(from, to, coords);
+ if (coords.length === 3) {
+ return [transformedArray.x, transformedArray.y, transformedArray.z];
+ }
+ else {
+ return [transformedArray.x, transformedArray.y];
+ }
+ }
+ else {
+ return transform(from, to, coords);
+ }
+ }
+
+ function checkProj(item) {
+ if (item instanceof Projection$1) {
+ return item;
+ }
+ if (item.oProj) {
+ return item.oProj;
+ }
+ return Projection$1(item);
+ }
+ function proj4$1(fromProj, toProj, coord) {
+ fromProj = checkProj(fromProj);
+ var single = false;
+ var obj;
+ if (typeof toProj === 'undefined') {
+ toProj = fromProj;
+ fromProj = wgs84;
+ single = true;
+ }
+ else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) {
+ coord = toProj;
+ toProj = fromProj;
+ fromProj = wgs84;
+ single = true;
+ }
+ toProj = checkProj(toProj);
+ if (coord) {
+ return transformer(fromProj, toProj, coord);
+ }
+ else {
+ obj = {
+ forward: function(coords) {
+ return transformer(fromProj, toProj, coords);
+ },
+ inverse: function(coords) {
+ return transformer(toProj, fromProj, coords);
+ }
+ };
+ if (single) {
+ obj.oProj = toProj;
+ }
+ return obj;
+ }
+ }
+
+ /**
+ * UTM zones are grouped, and assigned to one of a group of 6
+ * sets.
+ *
+ * {int} @private
+ */
+ var NUM_100K_SETS = 6;
+
+ /**
+ * The column letters (for easting) of the lower left value, per
+ * set.
+ *
+ * {string} @private
+ */
+ var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS';
+
+ /**
+ * The row letters (for northing) of the lower left value, per
+ * set.
+ *
+ * {string} @private
+ */
+ var SET_ORIGIN_ROW_LETTERS = 'AFAFAF';
+
+ var A = 65; // A
+ var I = 73; // I
+ var O = 79; // O
+ var V = 86; // V
+ var Z = 90; // Z
+ var mgrs = {
+ forward: forward$1,
+ inverse: inverse$1,
+ toPoint: toPoint$1
+ };
+ /**
+ * Conversion of lat/lon to MGRS.
+ *
+ * @param {object} ll Object literal with lat and lon properties on a
+ * WGS84 ellipsoid.
+ * @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for
+ * 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5.
+ * @return {string} the MGRS string for the given location and accuracy.
+ */
+ function forward$1(ll, accuracy) {
+ accuracy = accuracy || 5; // default accuracy 1m
+ return encode(LLtoUTM({
+ lat: ll[1],
+ lon: ll[0]
+ }), accuracy);
+ }
+
+ /**
+ * Conversion of MGRS to lat/lon.
+ *
+ * @param {string} mgrs MGRS string.
+ * @return {array} An array with left (longitude), bottom (latitude), right
+ * (longitude) and top (latitude) values in WGS84, representing the
+ * bounding box for the provided MGRS reference.
+ */
+ function inverse$1(mgrs) {
+ var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
+ if (bbox.lat && bbox.lon) {
+ return [bbox.lon, bbox.lat, bbox.lon, bbox.lat];
+ }
+ return [bbox.left, bbox.bottom, bbox.right, bbox.top];
+ }
+
+ function toPoint$1(mgrs) {
+ var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
+ if (bbox.lat && bbox.lon) {
+ return [bbox.lon, bbox.lat];
+ }
+ return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2];
+ }
+ /**
+ * Conversion from degrees to radians.
+ *
+ * @private
+ * @param {number} deg the angle in degrees.
+ * @return {number} the angle in radians.
+ */
+ function degToRad(deg) {
+ return (deg * (Math.PI / 180.0));
+ }
+
+ /**
+ * Conversion from radians to degrees.
+ *
+ * @private
+ * @param {number} rad the angle in radians.
+ * @return {number} the angle in degrees.
+ */
+ function radToDeg(rad) {
+ return (180.0 * (rad / Math.PI));
+ }
+
+ /**
+ * Converts a set of Longitude and Latitude co-ordinates to UTM
+ * using the WGS84 ellipsoid.
+ *
+ * @private
+ * @param {object} ll Object literal with lat and lon properties
+ * representing the WGS84 coordinate to be converted.
+ * @return {object} Object literal containing the UTM value with easting,
+ * northing, zoneNumber and zoneLetter properties, and an optional
+ * accuracy property in digits. Returns null if the conversion failed.
+ */
+ function LLtoUTM(ll) {
+ var Lat = ll.lat;
+ var Long = ll.lon;
+ var a = 6378137.0; //ellip.radius;
+ var eccSquared = 0.00669438; //ellip.eccsq;
+ var k0 = 0.9996;
+ var LongOrigin;
+ var eccPrimeSquared;
+ var N, T, C, A, M;
+ var LatRad = degToRad(Lat);
+ var LongRad = degToRad(Long);
+ var LongOriginRad;
+ var ZoneNumber;
+ // (int)
+ ZoneNumber = Math.floor((Long + 180) / 6) + 1;
+
+ //Make sure the longitude 180.00 is in Zone 60
+ if (Long === 180) {
+ ZoneNumber = 60;
+ }
+
+ // Special zone for Norway
+ if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
+ ZoneNumber = 32;
+ }
+
+ // Special zones for Svalbard
+ if (Lat >= 72.0 && Lat < 84.0) {
+ if (Long >= 0.0 && Long < 9.0) {
+ ZoneNumber = 31;
+ }
+ else if (Long >= 9.0 && Long < 21.0) {
+ ZoneNumber = 33;
+ }
+ else if (Long >= 21.0 && Long < 33.0) {
+ ZoneNumber = 35;
+ }
+ else if (Long >= 33.0 && Long < 42.0) {
+ ZoneNumber = 37;
+ }
+ }
+
+ LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin
+ // in middle of
+ // zone
+ LongOriginRad = degToRad(LongOrigin);
+
+ eccPrimeSquared = (eccSquared) / (1 - eccSquared);
+
+ N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad));
+ T = Math.tan(LatRad) * Math.tan(LatRad);
+ C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad);
+ A = Math.cos(LatRad) * (LongRad - LongOriginRad);
+
+ M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad));
+
+ var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0);
+
+ var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0)));
+ if (Lat < 0.0) {
+ UTMNorthing += 10000000.0; //10000000 meter offset for
+ // southern hemisphere
+ }
+
+ return {
+ northing: Math.round(UTMNorthing),
+ easting: Math.round(UTMEasting),
+ zoneNumber: ZoneNumber,
+ zoneLetter: getLetterDesignator(Lat)
+ };
+ }
+
+ /**
+ * Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience
+ * class where the Zone can be specified as a single string eg."60N" which
+ * is then broken down into the ZoneNumber and ZoneLetter.
+ *
+ * @private
+ * @param {object} utm An object literal with northing, easting, zoneNumber
+ * and zoneLetter properties. If an optional accuracy property is
+ * provided (in meters), a bounding box will be returned instead of
+ * latitude and longitude.
+ * @return {object} An object literal containing either lat and lon values
+ * (if no accuracy was provided), or top, right, bottom and left values
+ * for the bounding box calculated according to the provided accuracy.
+ * Returns null if the conversion failed.
+ */
+ function UTMtoLL(utm) {
+
+ var UTMNorthing = utm.northing;
+ var UTMEasting = utm.easting;
+ var zoneLetter = utm.zoneLetter;
+ var zoneNumber = utm.zoneNumber;
+ // check the ZoneNummber is valid
+ if (zoneNumber < 0 || zoneNumber > 60) {
+ return null;
+ }
+
+ var k0 = 0.9996;
+ var a = 6378137.0; //ellip.radius;
+ var eccSquared = 0.00669438; //ellip.eccsq;
+ var eccPrimeSquared;
+ var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared));
+ var N1, T1, C1, R1, D, M;
+ var LongOrigin;
+ var mu, phi1Rad;
+
+ // remove 500,000 meter offset for longitude
+ var x = UTMEasting - 500000.0;
+ var y = UTMNorthing;
+
+ // We must know somehow if we are in the Northern or Southern
+ // hemisphere, this is the only time we use the letter So even
+ // if the Zone letter isn't exactly correct it should indicate
+ // the hemisphere correctly
+ if (zoneLetter < 'N') {
+ y -= 10000000.0; // remove 10,000,000 meter offset used
+ // for southern hemisphere
+ }
+
+ // There are 60 zones with zone 1 being at West -180 to -174
+ LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin
+ // in middle of
+ // zone
+
+ eccPrimeSquared = (eccSquared) / (1 - eccSquared);
+
+ M = y / k0;
+ mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256));
+
+ phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu);
+ // double phi1 = ProjMath.radToDeg(phi1Rad);
+
+ N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad));
+ T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad);
+ C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad);
+ R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5);
+ D = x / (N1 * k0);
+
+ var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720);
+ lat = radToDeg(lat);
+
+ var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad);
+ lon = LongOrigin + radToDeg(lon);
+
+ var result;
+ if (utm.accuracy) {
+ var topRight = UTMtoLL({
+ northing: utm.northing + utm.accuracy,
+ easting: utm.easting + utm.accuracy,
+ zoneLetter: utm.zoneLetter,
+ zoneNumber: utm.zoneNumber
+ });
+ result = {
+ top: topRight.lat,
+ right: topRight.lon,
+ bottom: lat,
+ left: lon
+ };
+ }
+ else {
+ result = {
+ lat: lat,
+ lon: lon
+ };
+ }
+ return result;
+ }
+
+ /**
+ * Calculates the MGRS letter designator for the given latitude.
+ *
+ * @private
+ * @param {number} lat The latitude in WGS84 to get the letter designator
+ * for.
+ * @return {char} The letter designator.
+ */
+ function getLetterDesignator(lat) {
+ //This is here as an error flag to show that the Latitude is
+ //outside MGRS limits
+ var LetterDesignator = 'Z';
+
+ if ((84 >= lat) && (lat >= 72)) {
+ LetterDesignator = 'X';
+ }
+ else if ((72 > lat) && (lat >= 64)) {
+ LetterDesignator = 'W';
+ }
+ else if ((64 > lat) && (lat >= 56)) {
+ LetterDesignator = 'V';
+ }
+ else if ((56 > lat) && (lat >= 48)) {
+ LetterDesignator = 'U';
+ }
+ else if ((48 > lat) && (lat >= 40)) {
+ LetterDesignator = 'T';
+ }
+ else if ((40 > lat) && (lat >= 32)) {
+ LetterDesignator = 'S';
+ }
+ else if ((32 > lat) && (lat >= 24)) {
+ LetterDesignator = 'R';
+ }
+ else if ((24 > lat) && (lat >= 16)) {
+ LetterDesignator = 'Q';
+ }
+ else if ((16 > lat) && (lat >= 8)) {
+ LetterDesignator = 'P';
+ }
+ else if ((8 > lat) && (lat >= 0)) {
+ LetterDesignator = 'N';
+ }
+ else if ((0 > lat) && (lat >= -8)) {
+ LetterDesignator = 'M';
+ }
+ else if ((-8 > lat) && (lat >= -16)) {
+ LetterDesignator = 'L';
+ }
+ else if ((-16 > lat) && (lat >= -24)) {
+ LetterDesignator = 'K';
+ }
+ else if ((-24 > lat) && (lat >= -32)) {
+ LetterDesignator = 'J';
+ }
+ else if ((-32 > lat) && (lat >= -40)) {
+ LetterDesignator = 'H';
+ }
+ else if ((-40 > lat) && (lat >= -48)) {
+ LetterDesignator = 'G';
+ }
+ else if ((-48 > lat) && (lat >= -56)) {
+ LetterDesignator = 'F';
+ }
+ else if ((-56 > lat) && (lat >= -64)) {
+ LetterDesignator = 'E';
+ }
+ else if ((-64 > lat) && (lat >= -72)) {
+ LetterDesignator = 'D';
+ }
+ else if ((-72 > lat) && (lat >= -80)) {
+ LetterDesignator = 'C';
+ }
+ return LetterDesignator;
+ }
+
+ /**
+ * Encodes a UTM location as MGRS string.
+ *
+ * @private
+ * @param {object} utm An object literal with easting, northing,
+ * zoneLetter, zoneNumber
+ * @param {number} accuracy Accuracy in digits (1-5).
+ * @return {string} MGRS string for the given UTM location.
+ */
+ function encode(utm, accuracy) {
+ // prepend with leading zeroes
+ var seasting = "00000" + utm.easting,
+ snorthing = "00000" + utm.northing;
+
+ return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy);
+ }
+
+ /**
+ * Get the two letter 100k designator for a given UTM easting,
+ * northing and zone number value.
+ *
+ * @private
+ * @param {number} easting
+ * @param {number} northing
+ * @param {number} zoneNumber
+ * @return the two letter 100k designator for the given UTM location.
+ */
+ function get100kID(easting, northing, zoneNumber) {
+ var setParm = get100kSetForZone(zoneNumber);
+ var setColumn = Math.floor(easting / 100000);
+ var setRow = Math.floor(northing / 100000) % 20;
+ return getLetter100kID(setColumn, setRow, setParm);
+ }
+
+ /**
+ * Given a UTM zone number, figure out the MGRS 100K set it is in.
+ *
+ * @private
+ * @param {number} i An UTM zone number.
+ * @return {number} the 100k set the UTM zone is in.
+ */
+ function get100kSetForZone(i) {
+ var setParm = i % NUM_100K_SETS;
+ if (setParm === 0) {
+ setParm = NUM_100K_SETS;
+ }
+
+ return setParm;
+ }
+
+ /**
+ * Get the two-letter MGRS 100k designator given information
+ * translated from the UTM northing, easting and zone number.
+ *
+ * @private
+ * @param {number} column the column index as it relates to the MGRS
+ * 100k set spreadsheet, created from the UTM easting.
+ * Values are 1-8.
+ * @param {number} row the row index as it relates to the MGRS 100k set
+ * spreadsheet, created from the UTM northing value. Values
+ * are from 0-19.
+ * @param {number} parm the set block, as it relates to the MGRS 100k set
+ * spreadsheet, created from the UTM zone. Values are from
+ * 1-60.
+ * @return two letter MGRS 100k code.
+ */
+ function getLetter100kID(column, row, parm) {
+ // colOrigin and rowOrigin are the letters at the origin of the set
+ var index = parm - 1;
+ var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index);
+ var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index);
+
+ // colInt and rowInt are the letters to build to return
+ var colInt = colOrigin + column - 1;
+ var rowInt = rowOrigin + row;
+ var rollover = false;
+
+ if (colInt > Z) {
+ colInt = colInt - Z + A - 1;
+ rollover = true;
+ }
+
+ if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) {
+ colInt++;
+ }
+
+ if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) {
+ colInt++;
+
+ if (colInt === I) {
+ colInt++;
+ }
+ }
+
+ if (colInt > Z) {
+ colInt = colInt - Z + A - 1;
+ }
+
+ if (rowInt > V) {
+ rowInt = rowInt - V + A - 1;
+ rollover = true;
+ }
+ else {
+ rollover = false;
+ }
+
+ if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) {
+ rowInt++;
+ }
+
+ if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) {
+ rowInt++;
+
+ if (rowInt === I) {
+ rowInt++;
+ }
+ }
+
+ if (rowInt > V) {
+ rowInt = rowInt - V + A - 1;
+ }
+
+ var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt);
+ return twoLetter;
+ }
+
+ /**
+ * Decode the UTM parameters from a MGRS string.
+ *
+ * @private
+ * @param {string} mgrsString an UPPERCASE coordinate string is expected.
+ * @return {object} An object literal with easting, northing, zoneLetter,
+ * zoneNumber and accuracy (in meters) properties.
+ */
+ function decode(mgrsString) {
+
+ if (mgrsString && mgrsString.length === 0) {
+ throw ("MGRSPoint coverting from nothing");
+ }
+
+ var length = mgrsString.length;
+
+ var hunK = null;
+ var sb = "";
+ var testChar;
+ var i = 0;
+
+ // get Zone number
+ while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) {
+ if (i >= 2) {
+ throw ("MGRSPoint bad conversion from: " + mgrsString);
+ }
+ sb += testChar;
+ i++;
+ }
+
+ var zoneNumber = parseInt(sb, 10);
+
+ if (i === 0 || i + 3 > length) {
+ // A good MGRS string has to be 4-5 digits long,
+ // ##AAA/#AAA at least.
+ throw ("MGRSPoint bad conversion from: " + mgrsString);
+ }
+
+ var zoneLetter = mgrsString.charAt(i++);
+
+ // Should we check the zone letter here? Why not.
+ if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') {
+ throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString);
+ }
+
+ hunK = mgrsString.substring(i, i += 2);
+
+ var set = get100kSetForZone(zoneNumber);
+
+ var east100k = getEastingFromChar(hunK.charAt(0), set);
+ var north100k = getNorthingFromChar(hunK.charAt(1), set);
+
+ // We have a bug where the northing may be 2000000 too low.
+ // How
+ // do we know when to roll over?
+
+ while (north100k < getMinNorthing(zoneLetter)) {
+ north100k += 2000000;
+ }
+
+ // calculate the char index for easting/northing separator
+ var remainder = length - i;
+
+ if (remainder % 2 !== 0) {
+ throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString);
+ }
+
+ var sep = remainder / 2;
+
+ var sepEasting = 0.0;
+ var sepNorthing = 0.0;
+ var accuracyBonus, sepEastingString, sepNorthingString, easting, northing;
+ if (sep > 0) {
+ accuracyBonus = 100000.0 / Math.pow(10, sep);
+ sepEastingString = mgrsString.substring(i, i + sep);
+ sepEasting = parseFloat(sepEastingString) * accuracyBonus;
+ sepNorthingString = mgrsString.substring(i + sep);
+ sepNorthing = parseFloat(sepNorthingString) * accuracyBonus;
+ }
+
+ easting = sepEasting + east100k;
+ northing = sepNorthing + north100k;
+
+ return {
+ easting: easting,
+ northing: northing,
+ zoneLetter: zoneLetter,
+ zoneNumber: zoneNumber,
+ accuracy: accuracyBonus
+ };
+ }
+
+ /**
+ * Given the first letter from a two-letter MGRS 100k zone, and given the
+ * MGRS table set for the zone number, figure out the easting value that
+ * should be added to the other, secondary easting value.
+ *
+ * @private
+ * @param {char} e The first letter from a two-letter MGRS 100´k zone.
+ * @param {number} set The MGRS table set for the zone number.
+ * @return {number} The easting value for the given letter and set.
+ */
+ function getEastingFromChar(e, set) {
+ // colOrigin is the letter at the origin of the set for the
+ // column
+ var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1);
+ var eastingValue = 100000.0;
+ var rewindMarker = false;
+
+ while (curCol !== e.charCodeAt(0)) {
+ curCol++;
+ if (curCol === I) {
+ curCol++;
+ }
+ if (curCol === O) {
+ curCol++;
+ }
+ if (curCol > Z) {
+ if (rewindMarker) {
+ throw ("Bad character: " + e);
+ }
+ curCol = A;
+ rewindMarker = true;
+ }
+ eastingValue += 100000.0;
+ }
+
+ return eastingValue;
+ }
+
+ /**
+ * Given the second letter from a two-letter MGRS 100k zone, and given the
+ * MGRS table set for the zone number, figure out the northing value that
+ * should be added to the other, secondary northing value. You have to
+ * remember that Northings are determined from the equator, and the vertical
+ * cycle of letters mean a 2000000 additional northing meters. This happens
+ * approx. every 18 degrees of latitude. This method does *NOT* count any
+ * additional northings. You have to figure out how many 2000000 meters need
+ * to be added for the zone letter of the MGRS coordinate.
+ *
+ * @private
+ * @param {char} n Second letter of the MGRS 100k zone
+ * @param {number} set The MGRS table set number, which is dependent on the
+ * UTM zone number.
+ * @return {number} The northing value for the given letter and set.
+ */
+ function getNorthingFromChar(n, set) {
+
+ if (n > 'V') {
+ throw ("MGRSPoint given invalid Northing " + n);
+ }
+
+ // rowOrigin is the letter at the origin of the set for the
+ // column
+ var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1);
+ var northingValue = 0.0;
+ var rewindMarker = false;
+
+ while (curRow !== n.charCodeAt(0)) {
+ curRow++;
+ if (curRow === I) {
+ curRow++;
+ }
+ if (curRow === O) {
+ curRow++;
+ }
+ // fixing a bug making whole application hang in this loop
+ // when 'n' is a wrong character
+ if (curRow > V) {
+ if (rewindMarker) { // making sure that this loop ends
+ throw ("Bad character: " + n);
+ }
+ curRow = A;
+ rewindMarker = true;
+ }
+ northingValue += 100000.0;
+ }
+
+ return northingValue;
+ }
+
+ /**
+ * The function getMinNorthing returns the minimum northing value of a MGRS
+ * zone.
+ *
+ * Ported from Geotrans' c Lattitude_Band_Value structure table.
+ *
+ * @private
+ * @param {char} zoneLetter The MGRS zone to get the min northing for.
+ * @return {number}
+ */
+ function getMinNorthing(zoneLetter) {
+ var northing;
+ switch (zoneLetter) {
+ case 'C':
+ northing = 1100000.0;
+ break;
+ case 'D':
+ northing = 2000000.0;
+ break;
+ case 'E':
+ northing = 2800000.0;
+ break;
+ case 'F':
+ northing = 3700000.0;
+ break;
+ case 'G':
+ northing = 4600000.0;
+ break;
+ case 'H':
+ northing = 5500000.0;
+ break;
+ case 'J':
+ northing = 6400000.0;
+ break;
+ case 'K':
+ northing = 7300000.0;
+ break;
+ case 'L':
+ northing = 8200000.0;
+ break;
+ case 'M':
+ northing = 9100000.0;
+ break;
+ case 'N':
+ northing = 0.0;
+ break;
+ case 'P':
+ northing = 800000.0;
+ break;
+ case 'Q':
+ northing = 1700000.0;
+ break;
+ case 'R':
+ northing = 2600000.0;
+ break;
+ case 'S':
+ northing = 3500000.0;
+ break;
+ case 'T':
+ northing = 4400000.0;
+ break;
+ case 'U':
+ northing = 5300000.0;
+ break;
+ case 'V':
+ northing = 6200000.0;
+ break;
+ case 'W':
+ northing = 7000000.0;
+ break;
+ case 'X':
+ northing = 7900000.0;
+ break;
+ default:
+ northing = -1.0;
+ }
+ if (northing >= 0.0) {
+ return northing;
+ }
+ else {
+ throw ("Invalid zone letter: " + zoneLetter);
+ }
+
+ }
+
+ function Point(x, y, z) {
+ if (!(this instanceof Point)) {
+ return new Point(x, y, z);
+ }
+ if (Array.isArray(x)) {
+ this.x = x[0];
+ this.y = x[1];
+ this.z = x[2] || 0.0;
+ } else if(typeof x === 'object') {
+ this.x = x.x;
+ this.y = x.y;
+ this.z = x.z || 0.0;
+ } else if (typeof x === 'string' && typeof y === 'undefined') {
+ var coords = x.split(',');
+ this.x = parseFloat(coords[0], 10);
+ this.y = parseFloat(coords[1], 10);
+ this.z = parseFloat(coords[2], 10) || 0.0;
+ } else {
+ this.x = x;
+ this.y = y;
+ this.z = z || 0.0;
+ }
+ console.warn('proj4.Point will be removed in version 3, use proj4.toPoint');
+ }
+
+ Point.fromMGRS = function(mgrsStr) {
+ return new Point(toPoint$1(mgrsStr));
+ };
+ Point.prototype.toMGRS = function(accuracy) {
+ return forward$1([this.x, this.y], accuracy);
+ };
+
+ var version = "2.4.3";
+
+ var C00 = 1;
+ var C02 = 0.25;
+ var C04 = 0.046875;
+ var C06 = 0.01953125;
+ var C08 = 0.01068115234375;
+ var C22 = 0.75;
+ var C44 = 0.46875;
+ var C46 = 0.01302083333333333333;
+ var C48 = 0.00712076822916666666;
+ var C66 = 0.36458333333333333333;
+ var C68 = 0.00569661458333333333;
+ var C88 = 0.3076171875;
+
+ var pj_enfn = function(es) {
+ var en = [];
+ en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08)));
+ en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08)));
+ var t = es * es;
+ en[2] = t * (C44 - es * (C46 + es * C48));
+ t *= es;
+ en[3] = t * (C66 - es * C68);
+ en[4] = t * es * C88;
+ return en;
+ };
+
+ var pj_mlfn = function(phi, sphi, cphi, en) {
+ cphi *= sphi;
+ sphi *= sphi;
+ return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4]))));
+ };
+
+ var MAX_ITER = 20;
+
+ var pj_inv_mlfn = function(arg, es, en) {
+ var k = 1 / (1 - es);
+ var phi = arg;
+ for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */
+ var s = Math.sin(phi);
+ var t = 1 - es * s * s;
+ //t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg;
+ //phi -= t * (t * Math.sqrt(t)) * k;
+ t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k;
+ phi -= t;
+ if (Math.abs(t) < EPSLN) {
+ return phi;
+ }
+ }
+ //..reportError("cass:pj_inv_mlfn: Convergence error");
+ return phi;
+ };
+
+ // Heavily based on this tmerc projection implementation
+ // https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/tmerc.js
+
+ function init$2() {
+ this.x0 = this.x0 !== undefined ? this.x0 : 0;
+ this.y0 = this.y0 !== undefined ? this.y0 : 0;
+ this.long0 = this.long0 !== undefined ? this.long0 : 0;
+ this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
+
+ if (this.es) {
+ this.en = pj_enfn(this.es);
+ this.ml0 = pj_mlfn(this.lat0, Math.sin(this.lat0), Math.cos(this.lat0), this.en);
+ }
+ }
+
+ /**
+ Transverse Mercator Forward - long/lat to x/y
+ long/lat in radians
+ */
+ function forward$2(p) {
+ var lon = p.x;
+ var lat = p.y;
+
+ var delta_lon = adjust_lon(lon - this.long0);
+ var con;
+ var x, y;
+ var sin_phi = Math.sin(lat);
+ var cos_phi = Math.cos(lat);
+
+ if (!this.es) {
+ var b = cos_phi * Math.sin(delta_lon);
+
+ if ((Math.abs(Math.abs(b) - 1)) < EPSLN) {
+ return (93);
+ }
+ else {
+ x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)) + this.x0;
+ y = cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - Math.pow(b, 2));
+ b = Math.abs(y);
+
+ if (b >= 1) {
+ if ((b - 1) > EPSLN) {
+ return (93);
+ }
+ else {
+ y = 0;
+ }
+ }
+ else {
+ y = Math.acos(y);
+ }
+
+ if (lat < 0) {
+ y = -y;
+ }
+
+ y = this.a * this.k0 * (y - this.lat0) + this.y0;
+ }
+ }
+ else {
+ var al = cos_phi * delta_lon;
+ var als = Math.pow(al, 2);
+ var c = this.ep2 * Math.pow(cos_phi, 2);
+ var cs = Math.pow(c, 2);
+ var tq = Math.abs(cos_phi) > EPSLN ? Math.tan(lat) : 0;
+ var t = Math.pow(tq, 2);
+ var ts = Math.pow(t, 2);
+ con = 1 - this.es * Math.pow(sin_phi, 2);
+ al = al / Math.sqrt(con);
+ var ml = pj_mlfn(lat, sin_phi, cos_phi, this.en);
+
+ x = this.a * (this.k0 * al * (1 +
+ als / 6 * (1 - t + c +
+ als / 20 * (5 - 18 * t + ts + 14 * c - 58 * t * c +
+ als / 42 * (61 + 179 * ts - ts * t - 479 * t))))) +
+ this.x0;
+
+ y = this.a * (this.k0 * (ml - this.ml0 +
+ sin_phi * delta_lon * al / 2 * (1 +
+ als / 12 * (5 - t + 9 * c + 4 * cs +
+ als / 30 * (61 + ts - 58 * t + 270 * c - 330 * t * c +
+ als / 56 * (1385 + 543 * ts - ts * t - 3111 * t)))))) +
+ this.y0;
+ }
+
+ p.x = x;
+ p.y = y;
+
+ return p;
+ }
+
+ /**
+ Transverse Mercator Inverse - x/y to long/lat
+ */
+ function inverse$2(p) {
+ var con, phi;
+ var lat, lon;
+ var x = (p.x - this.x0) * (1 / this.a);
+ var y = (p.y - this.y0) * (1 / this.a);
+
+ if (!this.es) {
+ var f = Math.exp(x / this.k0);
+ var g = 0.5 * (f - 1 / f);
+ var temp = this.lat0 + y / this.k0;
+ var h = Math.cos(temp);
+ con = Math.sqrt((1 - Math.pow(h, 2)) / (1 + Math.pow(g, 2)));
+ lat = Math.asin(con);
+
+ if (y < 0) {
+ lat = -lat;
+ }
+
+ if ((g === 0) && (h === 0)) {
+ lon = 0;
+ }
+ else {
+ lon = adjust_lon(Math.atan2(g, h) + this.long0);
+ }
+ }
+ else { // ellipsoidal form
+ con = this.ml0 + y / this.k0;
+ phi = pj_inv_mlfn(con, this.es, this.en);
+
+ if (Math.abs(phi) < HALF_PI) {
+ var sin_phi = Math.sin(phi);
+ var cos_phi = Math.cos(phi);
+ var tan_phi = Math.abs(cos_phi) > EPSLN ? Math.tan(phi) : 0;
+ var c = this.ep2 * Math.pow(cos_phi, 2);
+ var cs = Math.pow(c, 2);
+ var t = Math.pow(tan_phi, 2);
+ var ts = Math.pow(t, 2);
+ con = 1 - this.es * Math.pow(sin_phi, 2);
+ var d = x * Math.sqrt(con) / this.k0;
+ var ds = Math.pow(d, 2);
+ con = con * tan_phi;
+
+ lat = phi - (con * ds / (1 - this.es)) * 0.5 * (1 -
+ ds / 12 * (5 + 3 * t - 9 * c * t + c - 4 * cs -
+ ds / 30 * (61 + 90 * t - 252 * c * t + 45 * ts + 46 * c -
+ ds / 56 * (1385 + 3633 * t + 4095 * ts + 1574 * ts * t))));
+
+ lon = adjust_lon(this.long0 + (d * (1 -
+ ds / 6 * (1 + 2 * t + c -
+ ds / 20 * (5 + 28 * t + 24 * ts + 8 * c * t + 6 * c -
+ ds / 42 * (61 + 662 * t + 1320 * ts + 720 * ts * t)))) / cos_phi));
+ }
+ else {
+ lat = HALF_PI * sign(y);
+ lon = 0;
+ }
+ }
+
+ p.x = lon;
+ p.y = lat;
+
+ return p;
+ }
+
+ var names$3 = ["Transverse_Mercator", "Transverse Mercator", "tmerc"];
+ var tmerc = {
+ init: init$2,
+ forward: forward$2,
+ inverse: inverse$2,
+ names: names$3
+ };
+
+ var sinh = function(x) {
+ var r = Math.exp(x);
+ r = (r - 1 / r) / 2;
+ return r;
+ };
+
+ var hypot = function(x, y) {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ var a = Math.max(x, y);
+ var b = Math.min(x, y) / (a ? a : 1);
+
+ return a * Math.sqrt(1 + Math.pow(b, 2));
+ };
+
+ var log1py = function(x) {
+ var y = 1 + x;
+ var z = y - 1;
+
+ return z === 0 ? x : x * Math.log(y) / z;
+ };
+
+ var asinhy = function(x) {
+ var y = Math.abs(x);
+ y = log1py(y * (1 + y / (hypot(1, y) + 1)));
+
+ return x < 0 ? -y : y;
+ };
+
+ var gatg = function(pp, B) {
+ var cos_2B = 2 * Math.cos(2 * B);
+ var i = pp.length - 1;
+ var h1 = pp[i];
+ var h2 = 0;
+ var h;
+
+ while (--i >= 0) {
+ h = -h2 + cos_2B * h1 + pp[i];
+ h2 = h1;
+ h1 = h;
+ }
+
+ return (B + h * Math.sin(2 * B));
+ };
+
+ var clens = function(pp, arg_r) {
+ var r = 2 * Math.cos(arg_r);
+ var i = pp.length - 1;
+ var hr1 = pp[i];
+ var hr2 = 0;
+ var hr;
+
+ while (--i >= 0) {
+ hr = -hr2 + r * hr1 + pp[i];
+ hr2 = hr1;
+ hr1 = hr;
+ }
+
+ return Math.sin(arg_r) * hr;
+ };
+
+ var cosh = function(x) {
+ var r = Math.exp(x);
+ r = (r + 1 / r) / 2;
+ return r;
+ };
+
+ var clens_cmplx = function(pp, arg_r, arg_i) {
+ var sin_arg_r = Math.sin(arg_r);
+ var cos_arg_r = Math.cos(arg_r);
+ var sinh_arg_i = sinh(arg_i);
+ var cosh_arg_i = cosh(arg_i);
+ var r = 2 * cos_arg_r * cosh_arg_i;
+ var i = -2 * sin_arg_r * sinh_arg_i;
+ var j = pp.length - 1;
+ var hr = pp[j];
+ var hi1 = 0;
+ var hr1 = 0;
+ var hi = 0;
+ var hr2;
+ var hi2;
+
+ while (--j >= 0) {
+ hr2 = hr1;
+ hi2 = hi1;
+ hr1 = hr;
+ hi1 = hi;
+ hr = -hr2 + r * hr1 - i * hi1 + pp[j];
+ hi = -hi2 + i * hr1 + r * hi1;
+ }
+
+ r = sin_arg_r * cosh_arg_i;
+ i = cos_arg_r * sinh_arg_i;
+
+ return [r * hr - i * hi, r * hi + i * hr];
+ };
+
+ // Heavily based on this etmerc projection implementation
+ // https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/etmerc.js
+
+ function init$3() {
+ if (this.es === undefined || this.es <= 0) {
+ throw new Error('incorrect elliptical usage');
+ }
+
+ this.x0 = this.x0 !== undefined ? this.x0 : 0;
+ this.y0 = this.y0 !== undefined ? this.y0 : 0;
+ this.long0 = this.long0 !== undefined ? this.long0 : 0;
+ this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
+
+ this.cgb = [];
+ this.cbg = [];
+ this.utg = [];
+ this.gtu = [];
+
+ var f = this.es / (1 + Math.sqrt(1 - this.es));
+ var n = f / (2 - f);
+ var np = n;
+
+ this.cgb[0] = n * (2 + n * (-2 / 3 + n * (-2 + n * (116 / 45 + n * (26 / 45 + n * (-2854 / 675 ))))));
+ this.cbg[0] = n * (-2 + n * ( 2 / 3 + n * ( 4 / 3 + n * (-82 / 45 + n * (32 / 45 + n * (4642 / 4725))))));
+
+ np = np * n;
+ this.cgb[1] = np * (7 / 3 + n * (-8 / 5 + n * (-227 / 45 + n * (2704 / 315 + n * (2323 / 945)))));
+ this.cbg[1] = np * (5 / 3 + n * (-16 / 15 + n * ( -13 / 9 + n * (904 / 315 + n * (-1522 / 945)))));
+
+ np = np * n;
+ this.cgb[2] = np * (56 / 15 + n * (-136 / 35 + n * (-1262 / 105 + n * (73814 / 2835))));
+ this.cbg[2] = np * (-26 / 15 + n * (34 / 21 + n * (8 / 5 + n * (-12686 / 2835))));
+
+ np = np * n;
+ this.cgb[3] = np * (4279 / 630 + n * (-332 / 35 + n * (-399572 / 14175)));
+ this.cbg[3] = np * (1237 / 630 + n * (-12 / 5 + n * ( -24832 / 14175)));
+
+ np = np * n;
+ this.cgb[4] = np * (4174 / 315 + n * (-144838 / 6237));
+ this.cbg[4] = np * (-734 / 315 + n * (109598 / 31185));
+
+ np = np * n;
+ this.cgb[5] = np * (601676 / 22275);
+ this.cbg[5] = np * (444337 / 155925);
+
+ np = Math.pow(n, 2);
+ this.Qn = this.k0 / (1 + n) * (1 + np * (1 / 4 + np * (1 / 64 + np / 256)));
+
+ this.utg[0] = n * (-0.5 + n * ( 2 / 3 + n * (-37 / 96 + n * ( 1 / 360 + n * (81 / 512 + n * (-96199 / 604800))))));
+ this.gtu[0] = n * (0.5 + n * (-2 / 3 + n * (5 / 16 + n * (41 / 180 + n * (-127 / 288 + n * (7891 / 37800))))));
+
+ this.utg[1] = np * (-1 / 48 + n * (-1 / 15 + n * (437 / 1440 + n * (-46 / 105 + n * (1118711 / 3870720)))));
+ this.gtu[1] = np * (13 / 48 + n * (-3 / 5 + n * (557 / 1440 + n * (281 / 630 + n * (-1983433 / 1935360)))));
+
+ np = np * n;
+ this.utg[2] = np * (-17 / 480 + n * (37 / 840 + n * (209 / 4480 + n * (-5569 / 90720 ))));
+ this.gtu[2] = np * (61 / 240 + n * (-103 / 140 + n * (15061 / 26880 + n * (167603 / 181440))));
+
+ np = np * n;
+ this.utg[3] = np * (-4397 / 161280 + n * (11 / 504 + n * (830251 / 7257600)));
+ this.gtu[3] = np * (49561 / 161280 + n * (-179 / 168 + n * (6601661 / 7257600)));
+
+ np = np * n;
+ this.utg[4] = np * (-4583 / 161280 + n * (108847 / 3991680));
+ this.gtu[4] = np * (34729 / 80640 + n * (-3418889 / 1995840));
+
+ np = np * n;
+ this.utg[5] = np * (-20648693 / 638668800);
+ this.gtu[5] = np * (212378941 / 319334400);
+
+ var Z = gatg(this.cbg, this.lat0);
+ this.Zb = -this.Qn * (Z + clens(this.gtu, 2 * Z));
+ }
+
+ function forward$3(p) {
+ var Ce = adjust_lon(p.x - this.long0);
+ var Cn = p.y;
+
+ Cn = gatg(this.cbg, Cn);
+ var sin_Cn = Math.sin(Cn);
+ var cos_Cn = Math.cos(Cn);
+ var sin_Ce = Math.sin(Ce);
+ var cos_Ce = Math.cos(Ce);
+
+ Cn = Math.atan2(sin_Cn, cos_Ce * cos_Cn);
+ Ce = Math.atan2(sin_Ce * cos_Cn, hypot(sin_Cn, cos_Cn * cos_Ce));
+ Ce = asinhy(Math.tan(Ce));
+
+ var tmp = clens_cmplx(this.gtu, 2 * Cn, 2 * Ce);
+
+ Cn = Cn + tmp[0];
+ Ce = Ce + tmp[1];
+
+ var x;
+ var y;
+
+ if (Math.abs(Ce) <= 2.623395162778) {
+ x = this.a * (this.Qn * Ce) + this.x0;
+ y = this.a * (this.Qn * Cn + this.Zb) + this.y0;
+ }
+ else {
+ x = Infinity;
+ y = Infinity;
+ }
+
+ p.x = x;
+ p.y = y;
+
+ return p;
+ }
+
+ function inverse$3(p) {
+ var Ce = (p.x - this.x0) * (1 / this.a);
+ var Cn = (p.y - this.y0) * (1 / this.a);
+
+ Cn = (Cn - this.Zb) / this.Qn;
+ Ce = Ce / this.Qn;
+
+ var lon;
+ var lat;
+
+ if (Math.abs(Ce) <= 2.623395162778) {
+ var tmp = clens_cmplx(this.utg, 2 * Cn, 2 * Ce);
+
+ Cn = Cn + tmp[0];
+ Ce = Ce + tmp[1];
+ Ce = Math.atan(sinh(Ce));
+
+ var sin_Cn = Math.sin(Cn);
+ var cos_Cn = Math.cos(Cn);
+ var sin_Ce = Math.sin(Ce);
+ var cos_Ce = Math.cos(Ce);
+
+ Cn = Math.atan2(sin_Cn * cos_Ce, hypot(sin_Ce, cos_Ce * cos_Cn));
+ Ce = Math.atan2(sin_Ce, cos_Ce * cos_Cn);
+
+ lon = adjust_lon(Ce + this.long0);
+ lat = gatg(this.cgb, Cn);
+ }
+ else {
+ lon = Infinity;
+ lat = Infinity;
+ }
+
+ p.x = lon;
+ p.y = lat;
+
+ return p;
+ }
+
+ var names$4 = ["Extended_Transverse_Mercator", "Extended Transverse Mercator", "etmerc"];
+ var etmerc = {
+ init: init$3,
+ forward: forward$3,
+ inverse: inverse$3,
+ names: names$4
+ };
+
+ var adjust_zone = function(zone, lon) {
+ if (zone === undefined) {
+ zone = Math.floor((adjust_lon(lon) + Math.PI) * 30 / Math.PI) + 1;
+
+ if (zone < 0) {
+ return 0;
+ } else if (zone > 60) {
+ return 60;
+ }
+ }
+ return zone;
+ };
+
+ var dependsOn = 'etmerc';
+ function init$4() {
+ var zone = adjust_zone(this.zone, this.long0);
+ if (zone === undefined) {
+ throw new Error('unknown utm zone');
+ }
+ this.lat0 = 0;
+ this.long0 = ((6 * Math.abs(zone)) - 183) * D2R;
+ this.x0 = 500000;
+ this.y0 = this.utmSouth ? 10000000 : 0;
+ this.k0 = 0.9996;
+
+ etmerc.init.apply(this);
+ this.forward = etmerc.forward;
+ this.inverse = etmerc.inverse;
+ }
+
+ var names$5 = ["Universal Transverse Mercator System", "utm"];
+ var utm = {
+ init: init$4,
+ names: names$5,
+ dependsOn: dependsOn
+ };
+
+ var srat = function(esinp, exp) {
+ return (Math.pow((1 - esinp) / (1 + esinp), exp));
+ };
+
+ var MAX_ITER$1 = 20;
+ function init$6() {
+ var sphi = Math.sin(this.lat0);
+ var cphi = Math.cos(this.lat0);
+ cphi *= cphi;
+ this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi);
+ this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es));
+ this.phic0 = Math.asin(sphi / this.C);
+ this.ratexp = 0.5 * this.C * this.e;
+ this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp));
+ }
+
+ function forward$5(p) {
+ var lon = p.x;
+ var lat = p.y;
+
+ p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI;
+ p.x = this.C * lon;
+ return p;
+ }
+
+ function inverse$5(p) {
+ var DEL_TOL = 1e-14;
+ var lon = p.x / this.C;
+ var lat = p.y;
+ var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C);
+ for (var i = MAX_ITER$1; i > 0; --i) {
+ lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI;
+ if (Math.abs(lat - p.y) < DEL_TOL) {
+ break;
+ }
+ p.y = lat;
+ }
+ /* convergence failed */
+ if (!i) {
+ return null;
+ }
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$7 = ["gauss"];
+ var gauss = {
+ init: init$6,
+ forward: forward$5,
+ inverse: inverse$5,
+ names: names$7
+ };
+
+ function init$5() {
+ gauss.init.apply(this);
+ if (!this.rc) {
+ return;
+ }
+ this.sinc0 = Math.sin(this.phic0);
+ this.cosc0 = Math.cos(this.phic0);
+ this.R2 = 2 * this.rc;
+ if (!this.title) {
+ this.title = "Oblique Stereographic Alternative";
+ }
+ }
+
+ function forward$4(p) {
+ var sinc, cosc, cosl, k;
+ p.x = adjust_lon(p.x - this.long0);
+ gauss.forward.apply(this, [p]);
+ sinc = Math.sin(p.y);
+ cosc = Math.cos(p.y);
+ cosl = Math.cos(p.x);
+ k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl);
+ p.x = k * cosc * Math.sin(p.x);
+ p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl);
+ p.x = this.a * p.x + this.x0;
+ p.y = this.a * p.y + this.y0;
+ return p;
+ }
+
+ function inverse$4(p) {
+ var sinc, cosc, lon, lat, rho;
+ p.x = (p.x - this.x0) / this.a;
+ p.y = (p.y - this.y0) / this.a;
+
+ p.x /= this.k0;
+ p.y /= this.k0;
+ if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) {
+ var c = 2 * Math.atan2(rho, this.R2);
+ sinc = Math.sin(c);
+ cosc = Math.cos(c);
+ lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho);
+ lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc);
+ }
+ else {
+ lat = this.phic0;
+ lon = 0;
+ }
+
+ p.x = lon;
+ p.y = lat;
+ gauss.inverse.apply(this, [p]);
+ p.x = adjust_lon(p.x + this.long0);
+ return p;
+ }
+
+ var names$6 = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative"];
+ var sterea = {
+ init: init$5,
+ forward: forward$4,
+ inverse: inverse$4,
+ names: names$6
+ };
+
+ function ssfn_(phit, sinphi, eccen) {
+ sinphi *= eccen;
+ return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen));
+ }
+
+ function init$7() {
+ this.coslat0 = Math.cos(this.lat0);
+ this.sinlat0 = Math.sin(this.lat0);
+ if (this.sphere) {
+ if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
+ this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts));
+ }
+ }
+ else {
+ if (Math.abs(this.coslat0) <= EPSLN) {
+ if (this.lat0 > 0) {
+ //North pole
+ //trace('stere:north pole');
+ this.con = 1;
+ }
+ else {
+ //South pole
+ //trace('stere:south pole');
+ this.con = -1;
+ }
+ }
+ this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e));
+ if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
+ this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts));
+ }
+ this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0);
+ this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI;
+ this.cosX0 = Math.cos(this.X0);
+ this.sinX0 = Math.sin(this.X0);
+ }
+ }
+
+ // Stereographic forward equations--mapping lat,long to x,y
+ function forward$6(p) {
+ var lon = p.x;
+ var lat = p.y;
+ var sinlat = Math.sin(lat);
+ var coslat = Math.cos(lat);
+ var A, X, sinX, cosX, ts, rh;
+ var dlon = adjust_lon(lon - this.long0);
+
+ if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) {
+ //case of the origine point
+ //trace('stere:this is the origin point');
+ p.x = NaN;
+ p.y = NaN;
+ return p;
+ }
+ if (this.sphere) {
+ //trace('stere:sphere case');
+ A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon));
+ p.x = this.a * A * coslat * Math.sin(dlon) + this.x0;
+ p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0;
+ return p;
+ }
+ else {
+ X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI;
+ cosX = Math.cos(X);
+ sinX = Math.sin(X);
+ if (Math.abs(this.coslat0) <= EPSLN) {
+ ts = tsfnz(this.e, lat * this.con, this.con * sinlat);
+ rh = 2 * this.a * this.k0 * ts / this.cons;
+ p.x = this.x0 + rh * Math.sin(lon - this.long0);
+ p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0);
+ //trace(p.toString());
+ return p;
+ }
+ else if (Math.abs(this.sinlat0) < EPSLN) {
+ //Eq
+ //trace('stere:equateur');
+ A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon));
+ p.y = A * sinX;
+ }
+ else {
+ //other case
+ //trace('stere:normal case');
+ A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon)));
+ p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0;
+ }
+ p.x = A * cosX * Math.sin(dlon) + this.x0;
+ }
+ //trace(p.toString());
+ return p;
+ }
+
+ //* Stereographic inverse equations--mapping x,y to lat/long
+ function inverse$6(p) {
+ p.x -= this.x0;
+ p.y -= this.y0;
+ var lon, lat, ts, ce, Chi;
+ var rh = Math.sqrt(p.x * p.x + p.y * p.y);
+ if (this.sphere) {
+ var c = 2 * Math.atan(rh / (0.5 * this.a * this.k0));
+ lon = this.long0;
+ lat = this.lat0;
+ if (rh <= EPSLN) {
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh);
+ if (Math.abs(this.coslat0) < EPSLN) {
+ if (this.lat0 > 0) {
+ lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
+ }
+ else {
+ lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
+ }
+ }
+ else {
+ lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c)));
+ }
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ else {
+ if (Math.abs(this.coslat0) <= EPSLN) {
+ if (rh <= EPSLN) {
+ lat = this.lat0;
+ lon = this.long0;
+ p.x = lon;
+ p.y = lat;
+ //trace(p.toString());
+ return p;
+ }
+ p.x *= this.con;
+ p.y *= this.con;
+ ts = rh * this.cons / (2 * this.a * this.k0);
+ lat = this.con * phi2z(this.e, ts);
+ lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y));
+ }
+ else {
+ ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1));
+ lon = this.long0;
+ if (rh <= EPSLN) {
+ Chi = this.X0;
+ }
+ else {
+ Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh);
+ lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce)));
+ }
+ lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi)));
+ }
+ }
+ p.x = lon;
+ p.y = lat;
+
+ //trace(p.toString());
+ return p;
+
+ }
+
+ var names$8 = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"];
+ var stere = {
+ init: init$7,
+ forward: forward$6,
+ inverse: inverse$6,
+ names: names$8,
+ ssfn_: ssfn_
+ };
+
+ /*
+ references:
+ Formules et constantes pour le Calcul pour la
+ projection cylindrique conforme à axe oblique et pour la transformation entre
+ des systèmes de référence.
+ http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
+ */
+
+ function init$8() {
+ var phy0 = this.lat0;
+ this.lambda0 = this.long0;
+ var sinPhy0 = Math.sin(phy0);
+ var semiMajorAxis = this.a;
+ var invF = this.rf;
+ var flattening = 1 / invF;
+ var e2 = 2 * flattening - Math.pow(flattening, 2);
+ var e = this.e = Math.sqrt(e2);
+ this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
+ this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
+ this.b0 = Math.asin(sinPhy0 / this.alpha);
+ var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
+ var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
+ var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
+ this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
+ }
+
+ function forward$7(p) {
+ var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
+ var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
+ var S = -this.alpha * (Sa1 + Sa2) + this.K;
+
+ // spheric latitude
+ var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
+
+ // spheric longitude
+ var I = this.alpha * (p.x - this.lambda0);
+
+ // psoeudo equatorial rotation
+ var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
+
+ var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
+
+ p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
+ p.x = this.R * rotI + this.x0;
+ return p;
+ }
+
+ function inverse$7(p) {
+ var Y = p.x - this.x0;
+ var X = p.y - this.y0;
+
+ var rotI = Y / this.R;
+ var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
+
+ var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
+ var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
+
+ var lambda = this.lambda0 + I / this.alpha;
+
+ var S = 0;
+ var phy = b;
+ var prevPhy = -1000;
+ var iteration = 0;
+ while (Math.abs(phy - prevPhy) > 0.0000001) {
+ if (++iteration > 20) {
+ //...reportError("omercFwdInfinity");
+ return;
+ }
+ //S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
+ S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
+ prevPhy = phy;
+ phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
+ }
+
+ p.x = lambda;
+ p.y = phy;
+ return p;
+ }
+
+ var names$9 = ["somerc"];
+ var somerc = {
+ init: init$8,
+ forward: forward$7,
+ inverse: inverse$7,
+ names: names$9
+ };
+
+ /* Initialize the Oblique Mercator projection
+ ------------------------------------------*/
+ function init$9() {
+ this.no_off = this.no_off || false;
+ this.no_rot = this.no_rot || false;
+
+ if (isNaN(this.k0)) {
+ this.k0 = 1;
+ }
+ var sinlat = Math.sin(this.lat0);
+ var coslat = Math.cos(this.lat0);
+ var con = this.e * sinlat;
+
+ this.bl = Math.sqrt(1 + this.es / (1 - this.es) * Math.pow(coslat, 4));
+ this.al = this.a * this.bl * this.k0 * Math.sqrt(1 - this.es) / (1 - con * con);
+ var t0 = tsfnz(this.e, this.lat0, sinlat);
+ var dl = this.bl / coslat * Math.sqrt((1 - this.es) / (1 - con * con));
+ if (dl * dl < 1) {
+ dl = 1;
+ }
+ var fl;
+ var gl;
+ if (!isNaN(this.longc)) {
+ //Central point and azimuth method
+
+ if (this.lat0 >= 0) {
+ fl = dl + Math.sqrt(dl * dl - 1);
+ }
+ else {
+ fl = dl - Math.sqrt(dl * dl - 1);
+ }
+ this.el = fl * Math.pow(t0, this.bl);
+ gl = 0.5 * (fl - 1 / fl);
+ this.gamma0 = Math.asin(Math.sin(this.alpha) / dl);
+ this.long0 = this.longc - Math.asin(gl * Math.tan(this.gamma0)) / this.bl;
+
+ }
+ else {
+ //2 points method
+ var t1 = tsfnz(this.e, this.lat1, Math.sin(this.lat1));
+ var t2 = tsfnz(this.e, this.lat2, Math.sin(this.lat2));
+ if (this.lat0 >= 0) {
+ this.el = (dl + Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
+ }
+ else {
+ this.el = (dl - Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
+ }
+ var hl = Math.pow(t1, this.bl);
+ var ll = Math.pow(t2, this.bl);
+ fl = this.el / hl;
+ gl = 0.5 * (fl - 1 / fl);
+ var jl = (this.el * this.el - ll * hl) / (this.el * this.el + ll * hl);
+ var pl = (ll - hl) / (ll + hl);
+ var dlon12 = adjust_lon(this.long1 - this.long2);
+ this.long0 = 0.5 * (this.long1 + this.long2) - Math.atan(jl * Math.tan(0.5 * this.bl * (dlon12)) / pl) / this.bl;
+ this.long0 = adjust_lon(this.long0);
+ var dlon10 = adjust_lon(this.long1 - this.long0);
+ this.gamma0 = Math.atan(Math.sin(this.bl * (dlon10)) / gl);
+ this.alpha = Math.asin(dl * Math.sin(this.gamma0));
+ }
+
+ if (this.no_off) {
+ this.uc = 0;
+ }
+ else {
+ if (this.lat0 >= 0) {
+ this.uc = this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
+ }
+ else {
+ this.uc = -1 * this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
+ }
+ }
+
+ }
+
+ /* Oblique Mercator forward equations--mapping lat,long to x,y
+ ----------------------------------------------------------*/
+ function forward$8(p) {
+ var lon = p.x;
+ var lat = p.y;
+ var dlon = adjust_lon(lon - this.long0);
+ var us, vs;
+ var con;
+ if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
+ if (lat > 0) {
+ con = -1;
+ }
+ else {
+ con = 1;
+ }
+ vs = this.al / this.bl * Math.log(Math.tan(FORTPI + con * this.gamma0 * 0.5));
+ us = -1 * con * HALF_PI * this.al / this.bl;
+ }
+ else {
+ var t = tsfnz(this.e, lat, Math.sin(lat));
+ var ql = this.el / Math.pow(t, this.bl);
+ var sl = 0.5 * (ql - 1 / ql);
+ var tl = 0.5 * (ql + 1 / ql);
+ var vl = Math.sin(this.bl * (dlon));
+ var ul = (sl * Math.sin(this.gamma0) - vl * Math.cos(this.gamma0)) / tl;
+ if (Math.abs(Math.abs(ul) - 1) <= EPSLN) {
+ vs = Number.POSITIVE_INFINITY;
+ }
+ else {
+ vs = 0.5 * this.al * Math.log((1 - ul) / (1 + ul)) / this.bl;
+ }
+ if (Math.abs(Math.cos(this.bl * (dlon))) <= EPSLN) {
+ us = this.al * this.bl * (dlon);
+ }
+ else {
+ us = this.al * Math.atan2(sl * Math.cos(this.gamma0) + vl * Math.sin(this.gamma0), Math.cos(this.bl * dlon)) / this.bl;
+ }
+ }
+
+ if (this.no_rot) {
+ p.x = this.x0 + us;
+ p.y = this.y0 + vs;
+ }
+ else {
+
+ us -= this.uc;
+ p.x = this.x0 + vs * Math.cos(this.alpha) + us * Math.sin(this.alpha);
+ p.y = this.y0 + us * Math.cos(this.alpha) - vs * Math.sin(this.alpha);
+ }
+ return p;
+ }
+
+ function inverse$8(p) {
+ var us, vs;
+ if (this.no_rot) {
+ vs = p.y - this.y0;
+ us = p.x - this.x0;
+ }
+ else {
+ vs = (p.x - this.x0) * Math.cos(this.alpha) - (p.y - this.y0) * Math.sin(this.alpha);
+ us = (p.y - this.y0) * Math.cos(this.alpha) + (p.x - this.x0) * Math.sin(this.alpha);
+ us += this.uc;
+ }
+ var qp = Math.exp(-1 * this.bl * vs / this.al);
+ var sp = 0.5 * (qp - 1 / qp);
+ var tp = 0.5 * (qp + 1 / qp);
+ var vp = Math.sin(this.bl * us / this.al);
+ var up = (vp * Math.cos(this.gamma0) + sp * Math.sin(this.gamma0)) / tp;
+ var ts = Math.pow(this.el / Math.sqrt((1 + up) / (1 - up)), 1 / this.bl);
+ if (Math.abs(up - 1) < EPSLN) {
+ p.x = this.long0;
+ p.y = HALF_PI;
+ }
+ else if (Math.abs(up + 1) < EPSLN) {
+ p.x = this.long0;
+ p.y = -1 * HALF_PI;
+ }
+ else {
+ p.y = phi2z(this.e, ts);
+ p.x = adjust_lon(this.long0 - Math.atan2(sp * Math.cos(this.gamma0) - vp * Math.sin(this.gamma0), Math.cos(this.bl * us / this.al)) / this.bl);
+ }
+ return p;
+ }
+
+ var names$10 = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "omerc"];
+ var omerc = {
+ init: init$9,
+ forward: forward$8,
+ inverse: inverse$8,
+ names: names$10
+ };
+
+ function init$10() {
+
+ // array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north
+ //double c_lat; /* center latitude */
+ //double c_lon; /* center longitude */
+ //double lat1; /* first standard parallel */
+ //double lat2; /* second standard parallel */
+ //double r_maj; /* major axis */
+ //double r_min; /* minor axis */
+ //double false_east; /* x offset in meters */
+ //double false_north; /* y offset in meters */
+
+ if (!this.lat2) {
+ this.lat2 = this.lat1;
+ } //if lat2 is not defined
+ if (!this.k0) {
+ this.k0 = 1;
+ }
+ this.x0 = this.x0 || 0;
+ this.y0 = this.y0 || 0;
+ // Standard Parallels cannot be equal and on opposite sides of the equator
+ if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
+ return;
+ }
+
+ var temp = this.b / this.a;
+ this.e = Math.sqrt(1 - temp * temp);
+
+ var sin1 = Math.sin(this.lat1);
+ var cos1 = Math.cos(this.lat1);
+ var ms1 = msfnz(this.e, sin1, cos1);
+ var ts1 = tsfnz(this.e, this.lat1, sin1);
+
+ var sin2 = Math.sin(this.lat2);
+ var cos2 = Math.cos(this.lat2);
+ var ms2 = msfnz(this.e, sin2, cos2);
+ var ts2 = tsfnz(this.e, this.lat2, sin2);
+
+ var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
+
+ if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
+ this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
+ }
+ else {
+ this.ns = sin1;
+ }
+ if (isNaN(this.ns)) {
+ this.ns = sin1;
+ }
+ this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
+ this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
+ if (!this.title) {
+ this.title = "Lambert Conformal Conic";
+ }
+ }
+
+ // Lambert Conformal conic forward equations--mapping lat,long to x,y
+ // -----------------------------------------------------------------
+ function forward$9(p) {
+
+ var lon = p.x;
+ var lat = p.y;
+
+ // singular cases :
+ if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
+ lat = sign(lat) * (HALF_PI - 2 * EPSLN);
+ }
+
+ var con = Math.abs(Math.abs(lat) - HALF_PI);
+ var ts, rh1;
+ if (con > EPSLN) {
+ ts = tsfnz(this.e, lat, Math.sin(lat));
+ rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
+ }
+ else {
+ con = lat * this.ns;
+ if (con <= 0) {
+ return null;
+ }
+ rh1 = 0;
+ }
+ var theta = this.ns * adjust_lon(lon - this.long0);
+ p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
+ p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
+
+ return p;
+ }
+
+ // Lambert Conformal Conic inverse equations--mapping x,y to lat/long
+ // -----------------------------------------------------------------
+ function inverse$9(p) {
+
+ var rh1, con, ts;
+ var lat, lon;
+ var x = (p.x - this.x0) / this.k0;
+ var y = (this.rh - (p.y - this.y0) / this.k0);
+ if (this.ns > 0) {
+ rh1 = Math.sqrt(x * x + y * y);
+ con = 1;
+ }
+ else {
+ rh1 = -Math.sqrt(x * x + y * y);
+ con = -1;
+ }
+ var theta = 0;
+ if (rh1 !== 0) {
+ theta = Math.atan2((con * x), (con * y));
+ }
+ if ((rh1 !== 0) || (this.ns > 0)) {
+ con = 1 / this.ns;
+ ts = Math.pow((rh1 / (this.a * this.f0)), con);
+ lat = phi2z(this.e, ts);
+ if (lat === -9999) {
+ return null;
+ }
+ }
+ else {
+ lat = -HALF_PI;
+ }
+ lon = adjust_lon(theta / this.ns + this.long0);
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$11 = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"];
+ var lcc = {
+ init: init$10,
+ forward: forward$9,
+ inverse: inverse$9,
+ names: names$11
+ };
+
+ function init$11() {
+ this.a = 6377397.155;
+ this.es = 0.006674372230614;
+ this.e = Math.sqrt(this.es);
+ if (!this.lat0) {
+ this.lat0 = 0.863937979737193;
+ }
+ if (!this.long0) {
+ this.long0 = 0.7417649320975901 - 0.308341501185665;
+ }
+ /* if scale not set default to 0.9999 */
+ if (!this.k0) {
+ this.k0 = 0.9999;
+ }
+ this.s45 = 0.785398163397448; /* 45 */
+ this.s90 = 2 * this.s45;
+ this.fi0 = this.lat0;
+ this.e2 = this.es;
+ this.e = Math.sqrt(this.e2);
+ this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2));
+ this.uq = 1.04216856380474;
+ this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa);
+ this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2);
+ this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g;
+ this.k1 = this.k0;
+ this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2));
+ this.s0 = 1.37008346281555;
+ this.n = Math.sin(this.s0);
+ this.ro0 = this.k1 * this.n0 / Math.tan(this.s0);
+ this.ad = this.s90 - this.uq;
+ }
+
+ /* ellipsoid */
+ /* calculate xy from lat/lon */
+ /* Constants, identical to inverse transform function */
+ function forward$10(p) {
+ var gfi, u, deltav, s, d, eps, ro;
+ var lon = p.x;
+ var lat = p.y;
+ var delta_lon = adjust_lon(lon - this.long0);
+ /* Transformation */
+ gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2));
+ u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45);
+ deltav = -delta_lon * this.alfa;
+ s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav));
+ d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s));
+ eps = this.n * d;
+ ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n);
+ p.y = ro * Math.cos(eps) / 1;
+ p.x = ro * Math.sin(eps) / 1;
+
+ if (!this.czech) {
+ p.y *= -1;
+ p.x *= -1;
+ }
+ return (p);
+ }
+
+ /* calculate lat/lon from xy */
+ function inverse$10(p) {
+ var u, deltav, s, d, eps, ro, fi1;
+ var ok;
+
+ /* Transformation */
+ /* revert y, x*/
+ var tmp = p.x;
+ p.x = p.y;
+ p.y = tmp;
+ if (!this.czech) {
+ p.y *= -1;
+ p.x *= -1;
+ }
+ ro = Math.sqrt(p.x * p.x + p.y * p.y);
+ eps = Math.atan2(p.y, p.x);
+ d = eps / Math.sin(this.s0);
+ s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45);
+ u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d));
+ deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u));
+ p.x = this.long0 - deltav / this.alfa;
+ fi1 = u;
+ ok = 0;
+ var iter = 0;
+ do {
+ p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45);
+ if (Math.abs(fi1 - p.y) < 0.0000000001) {
+ ok = 1;
+ }
+ fi1 = p.y;
+ iter += 1;
+ } while (ok === 0 && iter < 15);
+ if (iter >= 15) {
+ return null;
+ }
+
+ return (p);
+ }
+
+ var names$12 = ["Krovak", "krovak"];
+ var krovak = {
+ init: init$11,
+ forward: forward$10,
+ inverse: inverse$10,
+ names: names$12
+ };
+
+ var mlfn = function(e0, e1, e2, e3, phi) {
+ return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi));
+ };
+
+ var e0fn = function(x) {
+ return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x)));
+ };
+
+ var e1fn = function(x) {
+ return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x)));
+ };
+
+ var e2fn = function(x) {
+ return (0.05859375 * x * x * (1 + 0.75 * x));
+ };
+
+ var e3fn = function(x) {
+ return (x * x * x * (35 / 3072));
+ };
+
+ var gN = function(a, e, sinphi) {
+ var temp = e * sinphi;
+ return a / Math.sqrt(1 - temp * temp);
+ };
+
+ var adjust_lat = function(x) {
+ return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI));
+ };
+
+ var imlfn = function(ml, e0, e1, e2, e3) {
+ var phi;
+ var dphi;
+
+ phi = ml / e0;
+ for (var i = 0; i < 15; i++) {
+ dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi));
+ phi += dphi;
+ if (Math.abs(dphi) <= 0.0000000001) {
+ return phi;
+ }
+ }
+
+ //..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations");
+ return NaN;
+ };
+
+ function init$12() {
+ if (!this.sphere) {
+ this.e0 = e0fn(this.es);
+ this.e1 = e1fn(this.es);
+ this.e2 = e2fn(this.es);
+ this.e3 = e3fn(this.es);
+ this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
+ }
+ }
+
+ /* Cassini forward equations--mapping lat,long to x,y
+ -----------------------------------------------------------------------*/
+ function forward$11(p) {
+
+ /* Forward equations
+ -----------------*/
+ var x, y;
+ var lam = p.x;
+ var phi = p.y;
+ lam = adjust_lon(lam - this.long0);
+
+ if (this.sphere) {
+ x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam));
+ y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0);
+ }
+ else {
+ //ellipsoid
+ var sinphi = Math.sin(phi);
+ var cosphi = Math.cos(phi);
+ var nl = gN(this.a, this.e, sinphi);
+ var tl = Math.tan(phi) * Math.tan(phi);
+ var al = lam * Math.cos(phi);
+ var asq = al * al;
+ var cl = this.es * cosphi * cosphi / (1 - this.es);
+ var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
+
+ x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120));
+ y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24);
+
+
+ }
+
+ p.x = x + this.x0;
+ p.y = y + this.y0;
+ return p;
+ }
+
+ /* Inverse equations
+ -----------------*/
+ function inverse$11(p) {
+ p.x -= this.x0;
+ p.y -= this.y0;
+ var x = p.x / this.a;
+ var y = p.y / this.a;
+ var phi, lam;
+
+ if (this.sphere) {
+ var dd = y + this.lat0;
+ phi = Math.asin(Math.sin(dd) * Math.cos(x));
+ lam = Math.atan2(Math.tan(x), Math.cos(dd));
+ }
+ else {
+ /* ellipsoid */
+ var ml1 = this.ml0 / this.a + y;
+ var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3);
+ if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) {
+ p.x = this.long0;
+ p.y = HALF_PI;
+ if (y < 0) {
+ p.y *= -1;
+ }
+ return p;
+ }
+ var nl1 = gN(this.a, this.e, Math.sin(phi1));
+
+ var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es);
+ var tl1 = Math.pow(Math.tan(phi1), 2);
+ var dl = x * this.a / nl1;
+ var dsq = dl * dl;
+ phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24);
+ lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1);
+
+ }
+
+ p.x = adjust_lon(lam + this.long0);
+ p.y = adjust_lat(phi);
+ return p;
+
+ }
+
+ var names$13 = ["Cassini", "Cassini_Soldner", "cass"];
+ var cass = {
+ init: init$12,
+ forward: forward$11,
+ inverse: inverse$11,
+ names: names$13
+ };
+
+ var qsfnz = function(eccent, sinphi) {
+ var con;
+ if (eccent > 1.0e-7) {
+ con = eccent * sinphi;
+ return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con))));
+ }
+ else {
+ return (2 * sinphi);
+ }
+ };
+
+ /*
+ reference
+ "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
+ The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
+ */
+
+ var S_POLE = 1;
+
+ var N_POLE = 2;
+ var EQUIT = 3;
+ var OBLIQ = 4;
+
+ /* Initialize the Lambert Azimuthal Equal Area projection
+ ------------------------------------------------------*/
+ function init$13() {
+ var t = Math.abs(this.lat0);
+ if (Math.abs(t - HALF_PI) < EPSLN) {
+ this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
+ }
+ else if (Math.abs(t) < EPSLN) {
+ this.mode = this.EQUIT;
+ }
+ else {
+ this.mode = this.OBLIQ;
+ }
+ if (this.es > 0) {
+ var sinphi;
+
+ this.qp = qsfnz(this.e, 1);
+ this.mmf = 0.5 / (1 - this.es);
+ this.apa = authset(this.es);
+ switch (this.mode) {
+ case this.N_POLE:
+ this.dd = 1;
+ break;
+ case this.S_POLE:
+ this.dd = 1;
+ break;
+ case this.EQUIT:
+ this.rq = Math.sqrt(0.5 * this.qp);
+ this.dd = 1 / this.rq;
+ this.xmf = 1;
+ this.ymf = 0.5 * this.qp;
+ break;
+ case this.OBLIQ:
+ this.rq = Math.sqrt(0.5 * this.qp);
+ sinphi = Math.sin(this.lat0);
+ this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
+ this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
+ this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
+ this.ymf = (this.xmf = this.rq) / this.dd;
+ this.xmf *= this.dd;
+ break;
+ }
+ }
+ else {
+ if (this.mode === this.OBLIQ) {
+ this.sinph0 = Math.sin(this.lat0);
+ this.cosph0 = Math.cos(this.lat0);
+ }
+ }
+ }
+
+ /* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
+ -----------------------------------------------------------------------*/
+ function forward$12(p) {
+
+ /* Forward equations
+ -----------------*/
+ var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
+ var lam = p.x;
+ var phi = p.y;
+
+ lam = adjust_lon(lam - this.long0);
+ if (this.sphere) {
+ sinphi = Math.sin(phi);
+ cosphi = Math.cos(phi);
+ coslam = Math.cos(lam);
+ if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
+ y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
+ if (y <= EPSLN) {
+ return null;
+ }
+ y = Math.sqrt(2 / y);
+ x = y * cosphi * Math.sin(lam);
+ y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
+ }
+ else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
+ if (this.mode === this.N_POLE) {
+ coslam = -coslam;
+ }
+ if (Math.abs(phi + this.phi0) < EPSLN) {
+ return null;
+ }
+ y = FORTPI - phi * 0.5;
+ y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
+ x = y * Math.sin(lam);
+ y *= coslam;
+ }
+ }
+ else {
+ sinb = 0;
+ cosb = 0;
+ b = 0;
+ coslam = Math.cos(lam);
+ sinlam = Math.sin(lam);
+ sinphi = Math.sin(phi);
+ q = qsfnz(this.e, sinphi);
+ if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
+ sinb = q / this.qp;
+ cosb = Math.sqrt(1 - sinb * sinb);
+ }
+ switch (this.mode) {
+ case this.OBLIQ:
+ b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
+ break;
+ case this.EQUIT:
+ b = 1 + cosb * coslam;
+ break;
+ case this.N_POLE:
+ b = HALF_PI + phi;
+ q = this.qp - q;
+ break;
+ case this.S_POLE:
+ b = phi - HALF_PI;
+ q = this.qp + q;
+ break;
+ }
+ if (Math.abs(b) < EPSLN) {
+ return null;
+ }
+ switch (this.mode) {
+ case this.OBLIQ:
+ case this.EQUIT:
+ b = Math.sqrt(2 / b);
+ if (this.mode === this.OBLIQ) {
+ y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
+ }
+ else {
+ y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
+ }
+ x = this.xmf * b * cosb * sinlam;
+ break;
+ case this.N_POLE:
+ case this.S_POLE:
+ if (q >= 0) {
+ x = (b = Math.sqrt(q)) * sinlam;
+ y = coslam * ((this.mode === this.S_POLE) ? b : -b);
+ }
+ else {
+ x = y = 0;
+ }
+ break;
+ }
+ }
+
+ p.x = this.a * x + this.x0;
+ p.y = this.a * y + this.y0;
+ return p;
+ }
+
+ /* Inverse equations
+ -----------------*/
+ function inverse$12(p) {
+ p.x -= this.x0;
+ p.y -= this.y0;
+ var x = p.x / this.a;
+ var y = p.y / this.a;
+ var lam, phi, cCe, sCe, q, rho, ab;
+ if (this.sphere) {
+ var cosz = 0,
+ rh, sinz = 0;
+
+ rh = Math.sqrt(x * x + y * y);
+ phi = rh * 0.5;
+ if (phi > 1) {
+ return null;
+ }
+ phi = 2 * Math.asin(phi);
+ if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
+ sinz = Math.sin(phi);
+ cosz = Math.cos(phi);
+ }
+ switch (this.mode) {
+ case this.EQUIT:
+ phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
+ x *= sinz;
+ y = cosz * rh;
+ break;
+ case this.OBLIQ:
+ phi = (Math.abs(rh) <= EPSLN) ? this.phi0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
+ x *= sinz * this.cosph0;
+ y = (cosz - Math.sin(phi) * this.sinph0) * rh;
+ break;
+ case this.N_POLE:
+ y = -y;
+ phi = HALF_PI - phi;
+ break;
+ case this.S_POLE:
+ phi -= HALF_PI;
+ break;
+ }
+ lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
+ }
+ else {
+ ab = 0;
+ if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
+ x /= this.dd;
+ y *= this.dd;
+ rho = Math.sqrt(x * x + y * y);
+ if (rho < EPSLN) {
+ p.x = 0;
+ p.y = this.phi0;
+ return p;
+ }
+ sCe = 2 * Math.asin(0.5 * rho / this.rq);
+ cCe = Math.cos(sCe);
+ x *= (sCe = Math.sin(sCe));
+ if (this.mode === this.OBLIQ) {
+ ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
+ q = this.qp * ab;
+ y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
+ }
+ else {
+ ab = y * sCe / rho;
+ q = this.qp * ab;
+ y = rho * cCe;
+ }
+ }
+ else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
+ if (this.mode === this.N_POLE) {
+ y = -y;
+ }
+ q = (x * x + y * y);
+ if (!q) {
+ p.x = 0;
+ p.y = this.phi0;
+ return p;
+ }
+ ab = 1 - q / this.qp;
+ if (this.mode === this.S_POLE) {
+ ab = -ab;
+ }
+ }
+ lam = Math.atan2(x, y);
+ phi = authlat(Math.asin(ab), this.apa);
+ }
+
+ p.x = adjust_lon(this.long0 + lam);
+ p.y = phi;
+ return p;
+ }
+
+ /* determine latitude from authalic latitude */
+ var P00 = 0.33333333333333333333;
+
+ var P01 = 0.17222222222222222222;
+ var P02 = 0.10257936507936507936;
+ var P10 = 0.06388888888888888888;
+ var P11 = 0.06640211640211640211;
+ var P20 = 0.01641501294219154443;
+
+ function authset(es) {
+ var t;
+ var APA = [];
+ APA[0] = es * P00;
+ t = es * es;
+ APA[0] += t * P01;
+ APA[1] = t * P10;
+ t *= es;
+ APA[0] += t * P02;
+ APA[1] += t * P11;
+ APA[2] = t * P20;
+ return APA;
+ }
+
+ function authlat(beta, APA) {
+ var t = beta + beta;
+ return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
+ }
+
+ var names$14 = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
+ var laea = {
+ init: init$13,
+ forward: forward$12,
+ inverse: inverse$12,
+ names: names$14,
+ S_POLE: S_POLE,
+ N_POLE: N_POLE,
+ EQUIT: EQUIT,
+ OBLIQ: OBLIQ
+ };
+
+ var asinz = function(x) {
+ if (Math.abs(x) > 1) {
+ x = (x > 1) ? 1 : -1;
+ }
+ return Math.asin(x);
+ };
+
+ function init$14() {
+
+ if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
+ return;
+ }
+ this.temp = this.b / this.a;
+ this.es = 1 - Math.pow(this.temp, 2);
+ this.e3 = Math.sqrt(this.es);
+
+ this.sin_po = Math.sin(this.lat1);
+ this.cos_po = Math.cos(this.lat1);
+ this.t1 = this.sin_po;
+ this.con = this.sin_po;
+ this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
+ this.qs1 = qsfnz(this.e3, this.sin_po, this.cos_po);
+
+ this.sin_po = Math.sin(this.lat2);
+ this.cos_po = Math.cos(this.lat2);
+ this.t2 = this.sin_po;
+ this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
+ this.qs2 = qsfnz(this.e3, this.sin_po, this.cos_po);
+
+ this.sin_po = Math.sin(this.lat0);
+ this.cos_po = Math.cos(this.lat0);
+ this.t3 = this.sin_po;
+ this.qs0 = qsfnz(this.e3, this.sin_po, this.cos_po);
+
+ if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
+ this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
+ }
+ else {
+ this.ns0 = this.con;
+ }
+ this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
+ this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
+ }
+
+ /* Albers Conical Equal Area forward equations--mapping lat,long to x,y
+ -------------------------------------------------------------------*/
+ function forward$13(p) {
+
+ var lon = p.x;
+ var lat = p.y;
+
+ this.sin_phi = Math.sin(lat);
+ this.cos_phi = Math.cos(lat);
+
+ var qs = qsfnz(this.e3, this.sin_phi, this.cos_phi);
+ var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
+ var theta = this.ns0 * adjust_lon(lon - this.long0);
+ var x = rh1 * Math.sin(theta) + this.x0;
+ var y = this.rh - rh1 * Math.cos(theta) + this.y0;
+
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ function inverse$13(p) {
+ var rh1, qs, con, theta, lon, lat;
+
+ p.x -= this.x0;
+ p.y = this.rh - p.y + this.y0;
+ if (this.ns0 >= 0) {
+ rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
+ con = 1;
+ }
+ else {
+ rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
+ con = -1;
+ }
+ theta = 0;
+ if (rh1 !== 0) {
+ theta = Math.atan2(con * p.x, con * p.y);
+ }
+ con = rh1 * this.ns0 / this.a;
+ if (this.sphere) {
+ lat = Math.asin((this.c - con * con) / (2 * this.ns0));
+ }
+ else {
+ qs = (this.c - con * con) / this.ns0;
+ lat = this.phi1z(this.e3, qs);
+ }
+
+ lon = adjust_lon(theta / this.ns0 + this.long0);
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ /* Function to compute phi1, the latitude for the inverse of the
+ Albers Conical Equal-Area projection.
+ -------------------------------------------*/
+ function phi1z(eccent, qs) {
+ var sinphi, cosphi, con, com, dphi;
+ var phi = asinz(0.5 * qs);
+ if (eccent < EPSLN) {
+ return phi;
+ }
+
+ var eccnts = eccent * eccent;
+ for (var i = 1; i <= 25; i++) {
+ sinphi = Math.sin(phi);
+ cosphi = Math.cos(phi);
+ con = eccent * sinphi;
+ com = 1 - con * con;
+ dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
+ phi = phi + dphi;
+ if (Math.abs(dphi) <= 1e-7) {
+ return phi;
+ }
+ }
+ return null;
+ }
+
+ var names$15 = ["Albers_Conic_Equal_Area", "Albers", "aea"];
+ var aea = {
+ init: init$14,
+ forward: forward$13,
+ inverse: inverse$13,
+ names: names$15,
+ phi1z: phi1z
+ };
+
+ /*
+ reference:
+ Wolfram Mathworld "Gnomonic Projection"
+ http://mathworld.wolfram.com/GnomonicProjection.html
+ Accessed: 12th November 2009
+ */
+ function init$15() {
+
+ /* Place parameters in static storage for common use
+ -------------------------------------------------*/
+ this.sin_p14 = Math.sin(this.lat0);
+ this.cos_p14 = Math.cos(this.lat0);
+ // Approximation for projecting points to the horizon (infinity)
+ this.infinity_dist = 1000 * this.a;
+ this.rc = 1;
+ }
+
+ /* Gnomonic forward equations--mapping lat,long to x,y
+ ---------------------------------------------------*/
+ function forward$14(p) {
+ var sinphi, cosphi; /* sin and cos value */
+ var dlon; /* delta longitude value */
+ var coslon; /* cos of longitude */
+ var ksp; /* scale factor */
+ var g;
+ var x, y;
+ var lon = p.x;
+ var lat = p.y;
+ /* Forward equations
+ -----------------*/
+ dlon = adjust_lon(lon - this.long0);
+
+ sinphi = Math.sin(lat);
+ cosphi = Math.cos(lat);
+
+ coslon = Math.cos(dlon);
+ g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
+ ksp = 1;
+ if ((g > 0) || (Math.abs(g) <= EPSLN)) {
+ x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
+ y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
+ }
+ else {
+
+ // Point is in the opposing hemisphere and is unprojectable
+ // We still need to return a reasonable point, so we project
+ // to infinity, on a bearing
+ // equivalent to the northern hemisphere equivalent
+ // This is a reasonable approximation for short shapes and lines that
+ // straddle the horizon.
+
+ x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
+ y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
+
+ }
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ function inverse$14(p) {
+ var rh; /* Rho */
+ var sinc, cosc;
+ var c;
+ var lon, lat;
+
+ /* Inverse equations
+ -----------------*/
+ p.x = (p.x - this.x0) / this.a;
+ p.y = (p.y - this.y0) / this.a;
+
+ p.x /= this.k0;
+ p.y /= this.k0;
+
+ if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
+ c = Math.atan2(rh, this.rc);
+ sinc = Math.sin(c);
+ cosc = Math.cos(c);
+
+ lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
+ lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
+ lon = adjust_lon(this.long0 + lon);
+ }
+ else {
+ lat = this.phic0;
+ lon = 0;
+ }
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$16 = ["gnom"];
+ var gnom = {
+ init: init$15,
+ forward: forward$14,
+ inverse: inverse$14,
+ names: names$16
+ };
+
+ var iqsfnz = function(eccent, q) {
+ var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent));
+ if (Math.abs(Math.abs(q) - temp) < 1.0E-6) {
+ if (q < 0) {
+ return (-1 * HALF_PI);
+ }
+ else {
+ return HALF_PI;
+ }
+ }
+ //var phi = 0.5* q/(1-eccent*eccent);
+ var phi = Math.asin(0.5 * q);
+ var dphi;
+ var sin_phi;
+ var cos_phi;
+ var con;
+ for (var i = 0; i < 30; i++) {
+ sin_phi = Math.sin(phi);
+ cos_phi = Math.cos(phi);
+ con = eccent * sin_phi;
+ dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
+ phi += dphi;
+ if (Math.abs(dphi) <= 0.0000000001) {
+ return phi;
+ }
+ }
+
+ //console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations");
+ return NaN;
+ };
+
+ /*
+ reference:
+ "Cartographic Projection Procedures for the UNIX Environment-
+ A User's Manual" by Gerald I. Evenden,
+ USGS Open File Report 90-284and Release 4 Interim Reports (2003)
+ */
+ function init$16() {
+ //no-op
+ if (!this.sphere) {
+ this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
+ }
+ }
+
+ /* Cylindrical Equal Area forward equations--mapping lat,long to x,y
+ ------------------------------------------------------------*/
+ function forward$15(p) {
+ var lon = p.x;
+ var lat = p.y;
+ var x, y;
+ /* Forward equations
+ -----------------*/
+ var dlon = adjust_lon(lon - this.long0);
+ if (this.sphere) {
+ x = this.x0 + this.a * dlon * Math.cos(this.lat_ts);
+ y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts);
+ }
+ else {
+ var qs = qsfnz(this.e, Math.sin(lat));
+ x = this.x0 + this.a * this.k0 * dlon;
+ y = this.y0 + this.a * qs * 0.5 / this.k0;
+ }
+
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ /* Cylindrical Equal Area inverse equations--mapping x,y to lat/long
+ ------------------------------------------------------------*/
+ function inverse$15(p) {
+ p.x -= this.x0;
+ p.y -= this.y0;
+ var lon, lat;
+
+ if (this.sphere) {
+ lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts));
+ lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts));
+ }
+ else {
+ lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a);
+ lon = adjust_lon(this.long0 + p.x / (this.a * this.k0));
+ }
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$17 = ["cea"];
+ var cea = {
+ init: init$16,
+ forward: forward$15,
+ inverse: inverse$15,
+ names: names$17
+ };
+
+ function init$17() {
+
+ this.x0 = this.x0 || 0;
+ this.y0 = this.y0 || 0;
+ this.lat0 = this.lat0 || 0;
+ this.long0 = this.long0 || 0;
+ this.lat_ts = this.lat_ts || 0;
+ this.title = this.title || "Equidistant Cylindrical (Plate Carre)";
+
+ this.rc = Math.cos(this.lat_ts);
+ }
+
+ // forward equations--mapping lat,long to x,y
+ // -----------------------------------------------------------------
+ function forward$16(p) {
+
+ var lon = p.x;
+ var lat = p.y;
+
+ var dlon = adjust_lon(lon - this.long0);
+ var dlat = adjust_lat(lat - this.lat0);
+ p.x = this.x0 + (this.a * dlon * this.rc);
+ p.y = this.y0 + (this.a * dlat);
+ return p;
+ }
+
+ // inverse equations--mapping x,y to lat/long
+ // -----------------------------------------------------------------
+ function inverse$16(p) {
+
+ var x = p.x;
+ var y = p.y;
+
+ p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc)));
+ p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a)));
+ return p;
+ }
+
+ var names$18 = ["Equirectangular", "Equidistant_Cylindrical", "eqc"];
+ var eqc = {
+ init: init$17,
+ forward: forward$16,
+ inverse: inverse$16,
+ names: names$18
+ };
+
+ var MAX_ITER$2 = 20;
+
+ function init$18() {
+ /* Place parameters in static storage for common use
+ -------------------------------------------------*/
+ this.temp = this.b / this.a;
+ this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
+ this.e = Math.sqrt(this.es);
+ this.e0 = e0fn(this.es);
+ this.e1 = e1fn(this.es);
+ this.e2 = e2fn(this.es);
+ this.e3 = e3fn(this.es);
+ this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas
+ }
+
+ /* Polyconic forward equations--mapping lat,long to x,y
+ ---------------------------------------------------*/
+ function forward$17(p) {
+ var lon = p.x;
+ var lat = p.y;
+ var x, y, el;
+ var dlon = adjust_lon(lon - this.long0);
+ el = dlon * Math.sin(lat);
+ if (this.sphere) {
+ if (Math.abs(lat) <= EPSLN) {
+ x = this.a * dlon;
+ y = -1 * this.a * this.lat0;
+ }
+ else {
+ x = this.a * Math.sin(el) / Math.tan(lat);
+ y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat));
+ }
+ }
+ else {
+ if (Math.abs(lat) <= EPSLN) {
+ x = this.a * dlon;
+ y = -1 * this.ml0;
+ }
+ else {
+ var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat);
+ x = nl * Math.sin(el);
+ y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el));
+ }
+
+ }
+ p.x = x + this.x0;
+ p.y = y + this.y0;
+ return p;
+ }
+
+ /* Inverse equations
+ -----------------*/
+ function inverse$17(p) {
+ var lon, lat, x, y, i;
+ var al, bl;
+ var phi, dphi;
+ x = p.x - this.x0;
+ y = p.y - this.y0;
+
+ if (this.sphere) {
+ if (Math.abs(y + this.a * this.lat0) <= EPSLN) {
+ lon = adjust_lon(x / this.a + this.long0);
+ lat = 0;
+ }
+ else {
+ al = this.lat0 + y / this.a;
+ bl = x * x / this.a / this.a + al * al;
+ phi = al;
+ var tanphi;
+ for (i = MAX_ITER$2; i; --i) {
+ tanphi = Math.tan(phi);
+ dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1);
+ phi += dphi;
+ if (Math.abs(dphi) <= EPSLN) {
+ lat = phi;
+ break;
+ }
+ }
+ lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat));
+ }
+ }
+ else {
+ if (Math.abs(y + this.ml0) <= EPSLN) {
+ lat = 0;
+ lon = adjust_lon(this.long0 + x / this.a);
+ }
+ else {
+
+ al = (this.ml0 + y) / this.a;
+ bl = x * x / this.a / this.a + al * al;
+ phi = al;
+ var cl, mln, mlnp, ma;
+ var con;
+ for (i = MAX_ITER$2; i; --i) {
+ con = this.e * Math.sin(phi);
+ cl = Math.sqrt(1 - con * con) * Math.tan(phi);
+ mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
+ mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi);
+ ma = mln / this.a;
+ dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp);
+ phi -= dphi;
+ if (Math.abs(dphi) <= EPSLN) {
+ lat = phi;
+ break;
+ }
+ }
+
+ //lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0);
+ cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat);
+ lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat));
+ }
+ }
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$19 = ["Polyconic", "poly"];
+ var poly = {
+ init: init$18,
+ forward: forward$17,
+ inverse: inverse$17,
+ names: names$19
+ };
+
+ /*
+ reference
+ Department of Land and Survey Technical Circular 1973/32
+ http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf
+ OSG Technical Report 4.1
+ http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf
+ */
+
+ /**
+ * iterations: Number of iterations to refine inverse transform.
+ * 0 -> km accuracy
+ * 1 -> m accuracy -- suitable for most mapping applications
+ * 2 -> mm accuracy
+ */
+
+
+ function init$19() {
+ this.A = [];
+ this.A[1] = 0.6399175073;
+ this.A[2] = -0.1358797613;
+ this.A[3] = 0.063294409;
+ this.A[4] = -0.02526853;
+ this.A[5] = 0.0117879;
+ this.A[6] = -0.0055161;
+ this.A[7] = 0.0026906;
+ this.A[8] = -0.001333;
+ this.A[9] = 0.00067;
+ this.A[10] = -0.00034;
+
+ this.B_re = [];
+ this.B_im = [];
+ this.B_re[1] = 0.7557853228;
+ this.B_im[1] = 0;
+ this.B_re[2] = 0.249204646;
+ this.B_im[2] = 0.003371507;
+ this.B_re[3] = -0.001541739;
+ this.B_im[3] = 0.041058560;
+ this.B_re[4] = -0.10162907;
+ this.B_im[4] = 0.01727609;
+ this.B_re[5] = -0.26623489;
+ this.B_im[5] = -0.36249218;
+ this.B_re[6] = -0.6870983;
+ this.B_im[6] = -1.1651967;
+
+ this.C_re = [];
+ this.C_im = [];
+ this.C_re[1] = 1.3231270439;
+ this.C_im[1] = 0;
+ this.C_re[2] = -0.577245789;
+ this.C_im[2] = -0.007809598;
+ this.C_re[3] = 0.508307513;
+ this.C_im[3] = -0.112208952;
+ this.C_re[4] = -0.15094762;
+ this.C_im[4] = 0.18200602;
+ this.C_re[5] = 1.01418179;
+ this.C_im[5] = 1.64497696;
+ this.C_re[6] = 1.9660549;
+ this.C_im[6] = 2.5127645;
+
+ this.D = [];
+ this.D[1] = 1.5627014243;
+ this.D[2] = 0.5185406398;
+ this.D[3] = -0.03333098;
+ this.D[4] = -0.1052906;
+ this.D[5] = -0.0368594;
+ this.D[6] = 0.007317;
+ this.D[7] = 0.01220;
+ this.D[8] = 0.00394;
+ this.D[9] = -0.0013;
+ }
+
+ /**
+ New Zealand Map Grid Forward - long/lat to x/y
+ long/lat in radians
+ */
+ function forward$18(p) {
+ var n;
+ var lon = p.x;
+ var lat = p.y;
+
+ var delta_lat = lat - this.lat0;
+ var delta_lon = lon - this.long0;
+
+ // 1. Calculate d_phi and d_psi ... // and d_lambda
+ // For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
+ var d_phi = delta_lat / SEC_TO_RAD * 1E-5;
+ var d_lambda = delta_lon;
+ var d_phi_n = 1; // d_phi^0
+
+ var d_psi = 0;
+ for (n = 1; n <= 10; n++) {
+ d_phi_n = d_phi_n * d_phi;
+ d_psi = d_psi + this.A[n] * d_phi_n;
+ }
+
+ // 2. Calculate theta
+ var th_re = d_psi;
+ var th_im = d_lambda;
+
+ // 3. Calculate z
+ var th_n_re = 1;
+ var th_n_im = 0; // theta^0
+ var th_n_re1;
+ var th_n_im1;
+
+ var z_re = 0;
+ var z_im = 0;
+ for (n = 1; n <= 6; n++) {
+ th_n_re1 = th_n_re * th_re - th_n_im * th_im;
+ th_n_im1 = th_n_im * th_re + th_n_re * th_im;
+ th_n_re = th_n_re1;
+ th_n_im = th_n_im1;
+ z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im;
+ z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im;
+ }
+
+ // 4. Calculate easting and northing
+ p.x = (z_im * this.a) + this.x0;
+ p.y = (z_re * this.a) + this.y0;
+
+ return p;
+ }
+
+ /**
+ New Zealand Map Grid Inverse - x/y to long/lat
+ */
+ function inverse$18(p) {
+ var n;
+ var x = p.x;
+ var y = p.y;
+
+ var delta_x = x - this.x0;
+ var delta_y = y - this.y0;
+
+ // 1. Calculate z
+ var z_re = delta_y / this.a;
+ var z_im = delta_x / this.a;
+
+ // 2a. Calculate theta - first approximation gives km accuracy
+ var z_n_re = 1;
+ var z_n_im = 0; // z^0
+ var z_n_re1;
+ var z_n_im1;
+
+ var th_re = 0;
+ var th_im = 0;
+ for (n = 1; n <= 6; n++) {
+ z_n_re1 = z_n_re * z_re - z_n_im * z_im;
+ z_n_im1 = z_n_im * z_re + z_n_re * z_im;
+ z_n_re = z_n_re1;
+ z_n_im = z_n_im1;
+ th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im;
+ th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im;
+ }
+
+ // 2b. Iterate to refine the accuracy of the calculation
+ // 0 iterations gives km accuracy
+ // 1 iteration gives m accuracy -- good enough for most mapping applications
+ // 2 iterations bives mm accuracy
+ for (var i = 0; i < this.iterations; i++) {
+ var th_n_re = th_re;
+ var th_n_im = th_im;
+ var th_n_re1;
+ var th_n_im1;
+
+ var num_re = z_re;
+ var num_im = z_im;
+ for (n = 2; n <= 6; n++) {
+ th_n_re1 = th_n_re * th_re - th_n_im * th_im;
+ th_n_im1 = th_n_im * th_re + th_n_re * th_im;
+ th_n_re = th_n_re1;
+ th_n_im = th_n_im1;
+ num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
+ num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
+ }
+
+ th_n_re = 1;
+ th_n_im = 0;
+ var den_re = this.B_re[1];
+ var den_im = this.B_im[1];
+ for (n = 2; n <= 6; n++) {
+ th_n_re1 = th_n_re * th_re - th_n_im * th_im;
+ th_n_im1 = th_n_im * th_re + th_n_re * th_im;
+ th_n_re = th_n_re1;
+ th_n_im = th_n_im1;
+ den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
+ den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
+ }
+
+ // Complex division
+ var den2 = den_re * den_re + den_im * den_im;
+ th_re = (num_re * den_re + num_im * den_im) / den2;
+ th_im = (num_im * den_re - num_re * den_im) / den2;
+ }
+
+ // 3. Calculate d_phi ... // and d_lambda
+ var d_psi = th_re;
+ var d_lambda = th_im;
+ var d_psi_n = 1; // d_psi^0
+
+ var d_phi = 0;
+ for (n = 1; n <= 9; n++) {
+ d_psi_n = d_psi_n * d_psi;
+ d_phi = d_phi + this.D[n] * d_psi_n;
+ }
+
+ // 4. Calculate latitude and longitude
+ // d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
+ var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5);
+ var lon = this.long0 + d_lambda;
+
+ p.x = lon;
+ p.y = lat;
+
+ return p;
+ }
+
+ var names$20 = ["New_Zealand_Map_Grid", "nzmg"];
+ var nzmg = {
+ init: init$19,
+ forward: forward$18,
+ inverse: inverse$18,
+ names: names$20
+ };
+
+ /*
+ reference
+ "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
+ The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
+ */
+
+
+ /* Initialize the Miller Cylindrical projection
+ -------------------------------------------*/
+ function init$20() {
+ //no-op
+ }
+
+ /* Miller Cylindrical forward equations--mapping lat,long to x,y
+ ------------------------------------------------------------*/
+ function forward$19(p) {
+ var lon = p.x;
+ var lat = p.y;
+ /* Forward equations
+ -----------------*/
+ var dlon = adjust_lon(lon - this.long0);
+ var x = this.x0 + this.a * dlon;
+ var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25;
+
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ /* Miller Cylindrical inverse equations--mapping x,y to lat/long
+ ------------------------------------------------------------*/
+ function inverse$19(p) {
+ p.x -= this.x0;
+ p.y -= this.y0;
+
+ var lon = adjust_lon(this.long0 + p.x / this.a);
+ var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4);
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$21 = ["Miller_Cylindrical", "mill"];
+ var mill = {
+ init: init$20,
+ forward: forward$19,
+ inverse: inverse$19,
+ names: names$21
+ };
+
+ var MAX_ITER$3 = 20;
+ function init$21() {
+ /* Place parameters in static storage for common use
+ -------------------------------------------------*/
+
+
+ if (!this.sphere) {
+ this.en = pj_enfn(this.es);
+ }
+ else {
+ this.n = 1;
+ this.m = 0;
+ this.es = 0;
+ this.C_y = Math.sqrt((this.m + 1) / this.n);
+ this.C_x = this.C_y / (this.m + 1);
+ }
+
+ }
+
+ /* Sinusoidal forward equations--mapping lat,long to x,y
+ -----------------------------------------------------*/
+ function forward$20(p) {
+ var x, y;
+ var lon = p.x;
+ var lat = p.y;
+ /* Forward equations
+ -----------------*/
+ lon = adjust_lon(lon - this.long0);
+
+ if (this.sphere) {
+ if (!this.m) {
+ lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat;
+ }
+ else {
+ var k = this.n * Math.sin(lat);
+ for (var i = MAX_ITER$3; i; --i) {
+ var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat));
+ lat -= V;
+ if (Math.abs(V) < EPSLN) {
+ break;
+ }
+ }
+ }
+ x = this.a * this.C_x * lon * (this.m + Math.cos(lat));
+ y = this.a * this.C_y * lat;
+
+ }
+ else {
+
+ var s = Math.sin(lat);
+ var c = Math.cos(lat);
+ y = this.a * pj_mlfn(lat, s, c, this.en);
+ x = this.a * lon * c / Math.sqrt(1 - this.es * s * s);
+ }
+
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ function inverse$20(p) {
+ var lat, temp, lon, s;
+
+ p.x -= this.x0;
+ lon = p.x / this.a;
+ p.y -= this.y0;
+ lat = p.y / this.a;
+
+ if (this.sphere) {
+ lat /= this.C_y;
+ lon = lon / (this.C_x * (this.m + Math.cos(lat)));
+ if (this.m) {
+ lat = asinz((this.m * lat + Math.sin(lat)) / this.n);
+ }
+ else if (this.n !== 1) {
+ lat = asinz(Math.sin(lat) / this.n);
+ }
+ lon = adjust_lon(lon + this.long0);
+ lat = adjust_lat(lat);
+ }
+ else {
+ lat = pj_inv_mlfn(p.y / this.a, this.es, this.en);
+ s = Math.abs(lat);
+ if (s < HALF_PI) {
+ s = Math.sin(lat);
+ temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat));
+ //temp = this.long0 + p.x / (this.a * Math.cos(lat));
+ lon = adjust_lon(temp);
+ }
+ else if ((s - EPSLN) < HALF_PI) {
+ lon = this.long0;
+ }
+ }
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$22 = ["Sinusoidal", "sinu"];
+ var sinu = {
+ init: init$21,
+ forward: forward$20,
+ inverse: inverse$20,
+ names: names$22
+ };
+
+ function init$22() {}
+ /* Mollweide forward equations--mapping lat,long to x,y
+ ----------------------------------------------------*/
+ function forward$21(p) {
+
+ /* Forward equations
+ -----------------*/
+ var lon = p.x;
+ var lat = p.y;
+
+ var delta_lon = adjust_lon(lon - this.long0);
+ var theta = lat;
+ var con = Math.PI * Math.sin(lat);
+
+ /* Iterate using the Newton-Raphson method to find theta
+ -----------------------------------------------------*/
+ for (var i = 0; true; i++) {
+ var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta));
+ theta += delta_theta;
+ if (Math.abs(delta_theta) < EPSLN) {
+ break;
+ }
+ }
+ theta /= 2;
+
+ /* If the latitude is 90 deg, force the x coordinate to be "0 + false easting"
+ this is done here because of precision problems with "cos(theta)"
+ --------------------------------------------------------------------------*/
+ if (Math.PI / 2 - Math.abs(lat) < EPSLN) {
+ delta_lon = 0;
+ }
+ var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0;
+ var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0;
+
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ function inverse$21(p) {
+ var theta;
+ var arg;
+
+ /* Inverse equations
+ -----------------*/
+ p.x -= this.x0;
+ p.y -= this.y0;
+ arg = p.y / (1.4142135623731 * this.a);
+
+ /* Because of division by zero problems, 'arg' can not be 1. Therefore
+ a number very close to one is used instead.
+ -------------------------------------------------------------------*/
+ if (Math.abs(arg) > 0.999999999999) {
+ arg = 0.999999999999;
+ }
+ theta = Math.asin(arg);
+ var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta))));
+ if (lon < (-Math.PI)) {
+ lon = -Math.PI;
+ }
+ if (lon > Math.PI) {
+ lon = Math.PI;
+ }
+ arg = (2 * theta + Math.sin(2 * theta)) / Math.PI;
+ if (Math.abs(arg) > 1) {
+ arg = 1;
+ }
+ var lat = Math.asin(arg);
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$23 = ["Mollweide", "moll"];
+ var moll = {
+ init: init$22,
+ forward: forward$21,
+ inverse: inverse$21,
+ names: names$23
+ };
+
+ function init$23() {
+
+ /* Place parameters in static storage for common use
+ -------------------------------------------------*/
+ // Standard Parallels cannot be equal and on opposite sides of the equator
+ if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
+ return;
+ }
+ this.lat2 = this.lat2 || this.lat1;
+ this.temp = this.b / this.a;
+ this.es = 1 - Math.pow(this.temp, 2);
+ this.e = Math.sqrt(this.es);
+ this.e0 = e0fn(this.es);
+ this.e1 = e1fn(this.es);
+ this.e2 = e2fn(this.es);
+ this.e3 = e3fn(this.es);
+
+ this.sinphi = Math.sin(this.lat1);
+ this.cosphi = Math.cos(this.lat1);
+
+ this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
+ this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
+
+ if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
+ this.ns = this.sinphi;
+ }
+ else {
+ this.sinphi = Math.sin(this.lat2);
+ this.cosphi = Math.cos(this.lat2);
+ this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
+ this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
+ this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
+ }
+ this.g = this.ml1 + this.ms1 / this.ns;
+ this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
+ this.rh = this.a * (this.g - this.ml0);
+ }
+
+ /* Equidistant Conic forward equations--mapping lat,long to x,y
+ -----------------------------------------------------------*/
+ function forward$22(p) {
+ var lon = p.x;
+ var lat = p.y;
+ var rh1;
+
+ /* Forward equations
+ -----------------*/
+ if (this.sphere) {
+ rh1 = this.a * (this.g - lat);
+ }
+ else {
+ var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
+ rh1 = this.a * (this.g - ml);
+ }
+ var theta = this.ns * adjust_lon(lon - this.long0);
+ var x = this.x0 + rh1 * Math.sin(theta);
+ var y = this.y0 + this.rh - rh1 * Math.cos(theta);
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ /* Inverse equations
+ -----------------*/
+ function inverse$22(p) {
+ p.x -= this.x0;
+ p.y = this.rh - p.y + this.y0;
+ var con, rh1, lat, lon;
+ if (this.ns >= 0) {
+ rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
+ con = 1;
+ }
+ else {
+ rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
+ con = -1;
+ }
+ var theta = 0;
+ if (rh1 !== 0) {
+ theta = Math.atan2(con * p.x, con * p.y);
+ }
+
+ if (this.sphere) {
+ lon = adjust_lon(this.long0 + theta / this.ns);
+ lat = adjust_lat(this.g - rh1 / this.a);
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ else {
+ var ml = this.g - rh1 / this.a;
+ lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
+ lon = adjust_lon(this.long0 + theta / this.ns);
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ }
+
+ var names$24 = ["Equidistant_Conic", "eqdc"];
+ var eqdc = {
+ init: init$23,
+ forward: forward$22,
+ inverse: inverse$22,
+ names: names$24
+ };
+
+ /* Initialize the Van Der Grinten projection
+ ----------------------------------------*/
+ function init$24() {
+ //this.R = 6370997; //Radius of earth
+ this.R = this.a;
+ }
+
+ function forward$23(p) {
+
+ var lon = p.x;
+ var lat = p.y;
+
+ /* Forward equations
+ -----------------*/
+ var dlon = adjust_lon(lon - this.long0);
+ var x, y;
+
+ if (Math.abs(lat) <= EPSLN) {
+ x = this.x0 + this.R * dlon;
+ y = this.y0;
+ }
+ var theta = asinz(2 * Math.abs(lat / Math.PI));
+ if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
+ x = this.x0;
+ if (lat >= 0) {
+ y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
+ }
+ else {
+ y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
+ }
+ // return(OK);
+ }
+ var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
+ var asq = al * al;
+ var sinth = Math.sin(theta);
+ var costh = Math.cos(theta);
+
+ var g = costh / (sinth + costh - 1);
+ var gsq = g * g;
+ var m = g * (2 / sinth - 1);
+ var msq = m * m;
+ var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
+ if (dlon < 0) {
+ con = -con;
+ }
+ x = this.x0 + con;
+ //con = Math.abs(con / (Math.PI * this.R));
+ var q = asq + g;
+ con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
+ if (lat >= 0) {
+ //y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
+ y = this.y0 + con;
+ }
+ else {
+ //y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
+ y = this.y0 - con;
+ }
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ /* Van Der Grinten inverse equations--mapping x,y to lat/long
+ ---------------------------------------------------------*/
+ function inverse$23(p) {
+ var lon, lat;
+ var xx, yy, xys, c1, c2, c3;
+ var a1;
+ var m1;
+ var con;
+ var th1;
+ var d;
+
+ /* inverse equations
+ -----------------*/
+ p.x -= this.x0;
+ p.y -= this.y0;
+ con = Math.PI * this.R;
+ xx = p.x / con;
+ yy = p.y / con;
+ xys = xx * xx + yy * yy;
+ c1 = -Math.abs(yy) * (1 + xys);
+ c2 = c1 - 2 * yy * yy + xx * xx;
+ c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
+ d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
+ a1 = (c1 - c2 * c2 / 3 / c3) / c3;
+ m1 = 2 * Math.sqrt(-a1 / 3);
+ con = ((3 * d) / a1) / m1;
+ if (Math.abs(con) > 1) {
+ if (con >= 0) {
+ con = 1;
+ }
+ else {
+ con = -1;
+ }
+ }
+ th1 = Math.acos(con) / 3;
+ if (p.y >= 0) {
+ lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
+ }
+ else {
+ lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
+ }
+
+ if (Math.abs(xx) < EPSLN) {
+ lon = this.long0;
+ }
+ else {
+ lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
+ }
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$25 = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
+ var vandg = {
+ init: init$24,
+ forward: forward$23,
+ inverse: inverse$23,
+ names: names$25
+ };
+
+ function init$25() {
+ this.sin_p12 = Math.sin(this.lat0);
+ this.cos_p12 = Math.cos(this.lat0);
+ }
+
+ function forward$24(p) {
+ var lon = p.x;
+ var lat = p.y;
+ var sinphi = Math.sin(p.y);
+ var cosphi = Math.cos(p.y);
+ var dlon = adjust_lon(lon - this.long0);
+ var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
+ if (this.sphere) {
+ if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
+ //North Pole case
+ p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
+ p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
+ return p;
+ }
+ else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
+ //South Pole case
+ p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
+ p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
+ return p;
+ }
+ else {
+ //default case
+ cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
+ c = Math.acos(cos_c);
+ kp = c / Math.sin(c);
+ p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
+ p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
+ return p;
+ }
+ }
+ else {
+ e0 = e0fn(this.es);
+ e1 = e1fn(this.es);
+ e2 = e2fn(this.es);
+ e3 = e3fn(this.es);
+ if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
+ //North Pole case
+ Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
+ Ml = this.a * mlfn(e0, e1, e2, e3, lat);
+ p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
+ p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
+ return p;
+ }
+ else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
+ //South Pole case
+ Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
+ Ml = this.a * mlfn(e0, e1, e2, e3, lat);
+ p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
+ p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
+ return p;
+ }
+ else {
+ //Default case
+ tanphi = sinphi / cosphi;
+ Nl1 = gN(this.a, this.e, this.sin_p12);
+ Nl = gN(this.a, this.e, sinphi);
+ psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
+ Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
+ if (Az === 0) {
+ s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
+ }
+ else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
+ s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
+ }
+ else {
+ s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
+ }
+ G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
+ H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
+ GH = G * H;
+ Hs = H * H;
+ s2 = s * s;
+ s3 = s2 * s;
+ s4 = s3 * s;
+ s5 = s4 * s;
+ c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
+ p.x = this.x0 + c * Math.sin(Az);
+ p.y = this.y0 + c * Math.cos(Az);
+ return p;
+ }
+ }
+
+
+ }
+
+ function inverse$24(p) {
+ p.x -= this.x0;
+ p.y -= this.y0;
+ var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F;
+ if (this.sphere) {
+ rh = Math.sqrt(p.x * p.x + p.y * p.y);
+ if (rh > (2 * HALF_PI * this.a)) {
+ return;
+ }
+ z = rh / this.a;
+
+ sinz = Math.sin(z);
+ cosz = Math.cos(z);
+
+ lon = this.long0;
+ if (Math.abs(rh) <= EPSLN) {
+ lat = this.lat0;
+ }
+ else {
+ lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
+ con = Math.abs(this.lat0) - HALF_PI;
+ if (Math.abs(con) <= EPSLN) {
+ if (this.lat0 >= 0) {
+ lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
+ }
+ else {
+ lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
+ }
+ }
+ else {
+ /*con = cosz - this.sin_p12 * Math.sin(lat);
+ if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
+ //no-op, just keep the lon value as is
+ } else {
+ var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
+ lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
+ }*/
+ lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
+ }
+ }
+
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ else {
+ e0 = e0fn(this.es);
+ e1 = e1fn(this.es);
+ e2 = e2fn(this.es);
+ e3 = e3fn(this.es);
+ if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
+ //North pole case
+ Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
+ rh = Math.sqrt(p.x * p.x + p.y * p.y);
+ M = Mlp - rh;
+ lat = imlfn(M / this.a, e0, e1, e2, e3);
+ lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
+ //South pole case
+ Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
+ rh = Math.sqrt(p.x * p.x + p.y * p.y);
+ M = rh - Mlp;
+
+ lat = imlfn(M / this.a, e0, e1, e2, e3);
+ lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ else {
+ //default case
+ rh = Math.sqrt(p.x * p.x + p.y * p.y);
+ Az = Math.atan2(p.x, p.y);
+ N1 = gN(this.a, this.e, this.sin_p12);
+ cosAz = Math.cos(Az);
+ tmp = this.e * this.cos_p12 * cosAz;
+ A = -tmp * tmp / (1 - this.es);
+ B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
+ D = rh / N1;
+ Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
+ F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
+ psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
+ lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
+ lat = Math.atan((1 - this.es * F * this.sin_p12 / Math.sin(psi)) * Math.tan(psi) / (1 - this.es));
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ }
+
+ }
+
+ var names$26 = ["Azimuthal_Equidistant", "aeqd"];
+ var aeqd = {
+ init: init$25,
+ forward: forward$24,
+ inverse: inverse$24,
+ names: names$26
+ };
+
+ function init$26() {
+ //double temp; /* temporary variable */
+
+ /* Place parameters in static storage for common use
+ -------------------------------------------------*/
+ this.sin_p14 = Math.sin(this.lat0);
+ this.cos_p14 = Math.cos(this.lat0);
+ }
+
+ /* Orthographic forward equations--mapping lat,long to x,y
+ ---------------------------------------------------*/
+ function forward$25(p) {
+ var sinphi, cosphi; /* sin and cos value */
+ var dlon; /* delta longitude value */
+ var coslon; /* cos of longitude */
+ var ksp; /* scale factor */
+ var g, x, y;
+ var lon = p.x;
+ var lat = p.y;
+ /* Forward equations
+ -----------------*/
+ dlon = adjust_lon(lon - this.long0);
+
+ sinphi = Math.sin(lat);
+ cosphi = Math.cos(lat);
+
+ coslon = Math.cos(dlon);
+ g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
+ ksp = 1;
+ if ((g > 0) || (Math.abs(g) <= EPSLN)) {
+ x = this.a * ksp * cosphi * Math.sin(dlon);
+ y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
+ }
+ p.x = x;
+ p.y = y;
+ return p;
+ }
+
+ function inverse$25(p) {
+ var rh; /* height above ellipsoid */
+ var z; /* angle */
+ var sinz, cosz; /* sin of z and cos of z */
+ var con;
+ var lon, lat;
+ /* Inverse equations
+ -----------------*/
+ p.x -= this.x0;
+ p.y -= this.y0;
+ rh = Math.sqrt(p.x * p.x + p.y * p.y);
+ z = asinz(rh / this.a);
+
+ sinz = Math.sin(z);
+ cosz = Math.cos(z);
+
+ lon = this.long0;
+ if (Math.abs(rh) <= EPSLN) {
+ lat = this.lat0;
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ lat = asinz(cosz * this.sin_p14 + (p.y * sinz * this.cos_p14) / rh);
+ con = Math.abs(this.lat0) - HALF_PI;
+ if (Math.abs(con) <= EPSLN) {
+ if (this.lat0 >= 0) {
+ lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
+ }
+ else {
+ lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
+ }
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+ lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz), rh * this.cos_p14 * cosz - p.y * this.sin_p14 * sinz));
+ p.x = lon;
+ p.y = lat;
+ return p;
+ }
+
+ var names$27 = ["ortho"];
+ var ortho = {
+ init: init$26,
+ forward: forward$25,
+ inverse: inverse$25,
+ names: names$27
+ };
+
+ var includedProjections = function(proj4){
+ proj4.Proj.projections.add(tmerc);
+ proj4.Proj.projections.add(etmerc);
+ proj4.Proj.projections.add(utm);
+ proj4.Proj.projections.add(sterea);
+ proj4.Proj.projections.add(stere);
+ proj4.Proj.projections.add(somerc);
+ proj4.Proj.projections.add(omerc);
+ proj4.Proj.projections.add(lcc);
+ proj4.Proj.projections.add(krovak);
+ proj4.Proj.projections.add(cass);
+ proj4.Proj.projections.add(laea);
+ proj4.Proj.projections.add(aea);
+ proj4.Proj.projections.add(gnom);
+ proj4.Proj.projections.add(cea);
+ proj4.Proj.projections.add(eqc);
+ proj4.Proj.projections.add(poly);
+ proj4.Proj.projections.add(nzmg);
+ proj4.Proj.projections.add(mill);
+ proj4.Proj.projections.add(sinu);
+ proj4.Proj.projections.add(moll);
+ proj4.Proj.projections.add(eqdc);
+ proj4.Proj.projections.add(vandg);
+ proj4.Proj.projections.add(aeqd);
+ proj4.Proj.projections.add(ortho);
+ };
+
+ proj4$1.defaultDatum = 'WGS84'; //default datum
+ proj4$1.Proj = Projection$1;
+ proj4$1.WGS84 = new proj4$1.Proj('WGS84');
+ proj4$1.Point = Point;
+ proj4$1.toPoint = toPoint;
+ proj4$1.defs = defs;
+ proj4$1.transform = transform;
+ proj4$1.mgrs = mgrs;
+ proj4$1.version = version;
+ includedProjections(proj4$1);
+
+ return proj4$1;
+
+})));
|